test_ctc_align.py 5.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15 16
from __future__ import print_function

17 18 19
import sys
import unittest
import numpy as np
20 21
from op_test import OpTest
from test_softmax_op import stable_softmax
22 23


24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
def CTCAlign(input, lod, blank, merge_repeated, padding=0):
    if lod is not None and len(lod) > 0:
        lod0 = lod[0]
        result = []
        cur_offset = 0
        for i in range(len(lod0)):
            prev_token = -1
            for j in range(cur_offset, cur_offset + lod0[i]):
                token = input[j][0]
                if (token != blank) and not (merge_repeated and
                                             token == prev_token):
                    result.append(token)
                prev_token = token
            cur_offset += lod0[i]
        result = np.array(result).reshape([len(result), 1]).astype("int32")
        if len(result) == 0:
            result = np.array([-1])
    else:
        result = [[] for i in range(len(input))]
        for i in range(len(input)):
            prev_token = -1
            for j in range(len(input[i])):
                token = input[i][j]
                if (token != blank) and not (merge_repeated and
                                             token == prev_token):
                    result[i].append(token)
                prev_token = token
            start = len(result[i])
            for j in range(start, len(input[i])):
                result[i].append(padding)
        result = np.array(result).reshape(
            [len(input), len(input[0])]).astype("int32")

57 58 59
    return result


W
wanghaoshuang 已提交
60
class TestCTCAlignOp(OpTest):
61
    def config(self):
W
wanghaoshuang 已提交
62
        self.op_type = "ctc_align"
63
        self.input_lod = [[11, 7]]
64 65 66 67 68 69 70 71
        self.blank = 0
        self.merge_repeated = False
        self.input = np.array(
            [0, 1, 2, 2, 0, 4, 0, 4, 5, 0, 6, 6, 0, 0, 7, 7, 7, 0]).reshape(
                [18, 1]).astype("int32")

    def setUp(self):
        self.config()
W
wanghaoshuang 已提交
72 73
        output = CTCAlign(self.input, self.input_lod, self.blank,
                          self.merge_repeated)
74 75 76 77 78 79 80 81 82 83 84 85 86

        self.inputs = {"Input": (self.input, self.input_lod), }
        self.outputs = {"Output": output}
        self.attrs = {
            "blank": self.blank,
            "merge_repeated": self.merge_repeated
        }

    def test_check_output(self):
        self.check_output()
        pass


W
wanghaoshuang 已提交
87
class TestCTCAlignOpCase1(TestCTCAlignOp):
88
    def config(self):
W
wanghaoshuang 已提交
89
        self.op_type = "ctc_align"
90
        self.input_lod = [[11, 8]]
91 92 93
        self.blank = 0
        self.merge_repeated = True
        self.input = np.array(
W
wanghaoshuang 已提交
94 95
            [0, 1, 2, 2, 0, 4, 0, 4, 5, 0, 6, 6, 0, 0, 7, 7, 7, 0, 0]).reshape(
                [19, 1]).astype("int32")
96 97


98 99 100
class TestCTCAlignOpCase2(TestCTCAlignOp):
    def config(self):
        self.op_type = "ctc_align"
101
        self.input_lod = [[4]]
102 103 104 105 106
        self.blank = 0
        self.merge_repeated = True
        self.input = np.array([0, 0, 0, 0]).reshape([4, 1]).astype("int32")


107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
class TestCTCAlignPaddingOp(OpTest):
    def config(self):
        self.op_type = "ctc_align"
        self.input_lod = []
        self.blank = 0
        self.padding_num = 0
        self.merge_repeated = True
        self.input = np.array([[0, 2, 4, 4, 0, 6, 3, 6, 6, 0, 0],
                               [1, 1, 3, 0, 0, 4, 5, 6, 0, 0, 0]]).reshape(
                                   [2, 11]).astype("int32")

    def setUp(self):
        self.config()
        output = CTCAlign(self.input, self.input_lod, self.blank,
                          self.merge_repeated, self.padding_num)
        self.inputs = {"Input": (self.input, self.input_lod), }
        self.outputs = {"Output": output}
        self.attrs = {
            "blank": self.blank,
            "merge_repeated": self.merge_repeated,
            "padding_num": self.padding_num
        }

    def test_check_output(self):
        self.check_output()
        pass


class TestCTCAlignOpCase3(TestCTCAlignPaddingOp):
    def config(self):
        self.op_type = "ctc_align"
        self.blank = 0
        self.input_lod = []
        self.merge_repeated = True
        self.padding_num = 0
        self.input = np.array([[0, 1, 2, 2, 0, 4], [0, 4, 5, 0, 6, 0],
                               [0, 7, 7, 7, 0, 0]]).reshape(
                                   [3, 6]).astype("int32")


class TestCTCAlignOpCase4(TestCTCAlignPaddingOp):
    '''
    # test tensor input which has attr input padding_num
    '''

    def config(self):
        self.op_type = "ctc_align"
        self.blank = 0
        self.input_lod = []
        self.merge_repeated = False
        self.padding_num = 0
        self.input = np.array([[0, 1, 2, 2, 0, 4], [0, 4, 5, 0, 6, 0],
                               [0, 7, 7, 7, 0, 0]]).reshape(
                                   [3, 6]).astype("int32")


class TestCTCAlignOpCase5(TestCTCAlignPaddingOp):
    def config(self):
        self.op_type = "ctc_align"
        self.blank = 0
        self.input_lod = []
        self.merge_repeated = False
        self.padding_num = 1
        self.input = np.array([[0, 1, 2, 2, 0, 4], [0, 4, 5, 0, 6, 0],
                               [0, 7, 1, 7, 0, 0]]).reshape(
                                   [3, 6]).astype("int32")


175 176
if __name__ == "__main__":
    unittest.main()