# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import sys import unittest import numpy as np from op_test import OpTest from test_softmax_op import stable_softmax def CTCAlign(input, lod, blank, merge_repeated, padding=0): if lod is not None and len(lod) > 0: lod0 = lod[0] result = [] cur_offset = 0 for i in range(len(lod0)): prev_token = -1 for j in range(cur_offset, cur_offset + lod0[i]): token = input[j][0] if (token != blank) and not (merge_repeated and token == prev_token): result.append(token) prev_token = token cur_offset += lod0[i] result = np.array(result).reshape([len(result), 1]).astype("int32") if len(result) == 0: result = np.array([-1]) else: result = [[] for i in range(len(input))] for i in range(len(input)): prev_token = -1 for j in range(len(input[i])): token = input[i][j] if (token != blank) and not (merge_repeated and token == prev_token): result[i].append(token) prev_token = token start = len(result[i]) for j in range(start, len(input[i])): result[i].append(padding) result = np.array(result).reshape( [len(input), len(input[0])]).astype("int32") return result class TestCTCAlignOp(OpTest): def config(self): self.op_type = "ctc_align" self.input_lod = [[11, 7]] self.blank = 0 self.merge_repeated = False self.input = np.array( [0, 1, 2, 2, 0, 4, 0, 4, 5, 0, 6, 6, 0, 0, 7, 7, 7, 0]).reshape( [18, 1]).astype("int32") def setUp(self): self.config() output = CTCAlign(self.input, self.input_lod, self.blank, self.merge_repeated) self.inputs = {"Input": (self.input, self.input_lod), } self.outputs = {"Output": output} self.attrs = { "blank": self.blank, "merge_repeated": self.merge_repeated } def test_check_output(self): self.check_output() pass class TestCTCAlignOpCase1(TestCTCAlignOp): def config(self): self.op_type = "ctc_align" self.input_lod = [[11, 8]] self.blank = 0 self.merge_repeated = True self.input = np.array( [0, 1, 2, 2, 0, 4, 0, 4, 5, 0, 6, 6, 0, 0, 7, 7, 7, 0, 0]).reshape( [19, 1]).astype("int32") class TestCTCAlignOpCase2(TestCTCAlignOp): def config(self): self.op_type = "ctc_align" self.input_lod = [[4]] self.blank = 0 self.merge_repeated = True self.input = np.array([0, 0, 0, 0]).reshape([4, 1]).astype("int32") class TestCTCAlignPaddingOp(OpTest): def config(self): self.op_type = "ctc_align" self.input_lod = [] self.blank = 0 self.padding_num = 0 self.merge_repeated = True self.input = np.array([[0, 2, 4, 4, 0, 6, 3, 6, 6, 0, 0], [1, 1, 3, 0, 0, 4, 5, 6, 0, 0, 0]]).reshape( [2, 11]).astype("int32") def setUp(self): self.config() output = CTCAlign(self.input, self.input_lod, self.blank, self.merge_repeated, self.padding_num) self.inputs = {"Input": (self.input, self.input_lod), } self.outputs = {"Output": output} self.attrs = { "blank": self.blank, "merge_repeated": self.merge_repeated, "padding_num": self.padding_num } def test_check_output(self): self.check_output() pass class TestCTCAlignOpCase3(TestCTCAlignPaddingOp): def config(self): self.op_type = "ctc_align" self.blank = 0 self.input_lod = [] self.merge_repeated = True self.padding_num = 0 self.input = np.array([[0, 1, 2, 2, 0, 4], [0, 4, 5, 0, 6, 0], [0, 7, 7, 7, 0, 0]]).reshape( [3, 6]).astype("int32") class TestCTCAlignOpCase4(TestCTCAlignPaddingOp): ''' # test tensor input which has attr input padding_num ''' def config(self): self.op_type = "ctc_align" self.blank = 0 self.input_lod = [] self.merge_repeated = False self.padding_num = 0 self.input = np.array([[0, 1, 2, 2, 0, 4], [0, 4, 5, 0, 6, 0], [0, 7, 7, 7, 0, 0]]).reshape( [3, 6]).astype("int32") class TestCTCAlignOpCase5(TestCTCAlignPaddingOp): def config(self): self.op_type = "ctc_align" self.blank = 0 self.input_lod = [] self.merge_repeated = False self.padding_num = 1 self.input = np.array([[0, 1, 2, 2, 0, 4], [0, 4, 5, 0, 6, 0], [0, 7, 1, 7, 0, 0]]).reshape( [3, 6]).astype("int32") if __name__ == "__main__": unittest.main()