inplace_abn_op.cc 13.8 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
//   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/inplace_abn_op.h"
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/operators/batch_norm_op.h"
H
hong 已提交
20 21
#include "paddle/phi/kernels/batch_norm_grad_kernel.h"
#include "paddle/phi/kernels/batch_norm_kernel.h"
K
Kaipeng Deng 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

namespace paddle {
namespace operators {

class InplaceABNOp : public paddle::operators::BatchNormOp {
 public:
  using paddle::operators::BatchNormOp::BatchNormOp;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
    // By default, the type of the scale, bias, mean,
    // and var tensors should both be float. (For float or float16 input tensor)
    // or double (For double input tensor).
    auto bn_param_type = framework::proto::VarType::FP32;
    if (input_data_type == framework::proto::VarType::FP64) {
      bn_param_type = framework::proto::VarType::FP64;
    }
41 42
    PADDLE_ENFORCE_EQ(bn_param_type, framework::TransToProtoVarType(
                                         ctx.Input<Tensor>("Scale")->dtype()),
K
Kaipeng Deng 已提交
43 44
                      platform::errors::InvalidArgument(
                          "Scale input should be of float type"));
45 46
    PADDLE_ENFORCE_EQ(bn_param_type, framework::TransToProtoVarType(
                                         ctx.Input<Tensor>("Bias")->dtype()),
K
Kaipeng Deng 已提交
47 48
                      platform::errors::InvalidArgument(
                          "Bias input should be of float type"));
49 50
    PADDLE_ENFORCE_EQ(bn_param_type, framework::TransToProtoVarType(
                                         ctx.Input<Tensor>("Mean")->dtype()),
K
Kaipeng Deng 已提交
51 52
                      platform::errors::InvalidArgument(
                          "Mean input should be of float type"));
53 54 55 56 57
    PADDLE_ENFORCE_EQ(
        bn_param_type,
        framework::TransToProtoVarType(ctx.Input<Tensor>("Variance")->dtype()),
        platform::errors::InvalidArgument(
            "Variance input should be of float type"));
K
Kaipeng Deng 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70

    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                   library);
  }
};

class InplaceABNGradOp : public paddle::operators::BatchNormGradOp {
 public:
  using paddle::operators::BatchNormGradOp::BatchNormGradOp;

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
  void InferShape(framework::InferShapeContext* ctx) const {
    // check input
    OP_INOUT_CHECK(ctx->HasInput("Scale"), "Input", "Scale", "InplaceABNGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")), "Input",
                   "Y@GRAD", "InplaceABNGrad");
    OP_INOUT_CHECK(ctx->HasInput("SavedMean"), "Input", "SavedMean",
                   "InplaceABNGrad");
    OP_INOUT_CHECK(ctx->HasInput("SavedVariance"), "Input", "SavedVariance",
                   "InplaceABNGrad");

    // check output
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
                   "X@GRAD", "InplaceABNGrad");

    const bool has_scale_grad = ctx->HasOutput(framework::GradVarName("Scale"));
    const bool has_bias_grad = ctx->HasOutput(framework::GradVarName("Bias"));

    PADDLE_ENFORCE_EQ(
        has_scale_grad, has_bias_grad,
        platform::errors::InvalidArgument(
            "Output(Scale@GRAD) and Output(Bias@GRAD) must be null "
            "or not be null at same time. But now, "
            "has Scale@Grad=[%d], has Bias@GRAD=[%d]",
            has_scale_grad, has_bias_grad));

    const bool use_global_stats = ctx->Attrs().Get<bool>("use_global_stats");
    if (use_global_stats) {
      PADDLE_ENFORCE_EQ(
          !ctx->Attrs().Get<bool>("use_mkldnn"), true,
          platform::errors::InvalidArgument(
              "Using global stats during training is not supported "
              "in gradient op kernel of batch_norm_mkldnn_op now."));
    }

    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "InplaceABNGrad");
    const auto y_dims = ctx->GetInputDim("Y");
    const DataLayout data_layout = framework::StringToDataLayout(
        ctx->Attrs().Get<std::string>("data_layout"));

110 111 112 113
    const int C = ((ctx->IsRunMKLDNNKernel() == true) ||
                           (data_layout == DataLayout::kNCHW)
                       ? y_dims[1]
                       : y_dims[y_dims.size() - 1]);
114 115 116 117 118 119 120 121 122

    ctx->SetOutputDim(framework::GradVarName("X"), y_dims);
    // has_scale_grad == has_bias_grad, judge has_scale_grad is enough
    if (has_scale_grad) {
      ctx->SetOutputDim(framework::GradVarName("Scale"), {C});
      ctx->SetOutputDim(framework::GradVarName("Bias"), {C});
    }
  }

K
Kaipeng Deng 已提交
123 124 125 126
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    const auto* var = ctx.InputVar(framework::GradVarName("Y"));
127 128
    auto input_data_type =
        framework::TransToProtoVarType(ctx.Input<Tensor>("Y")->dtype());
K
Kaipeng Deng 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
    if (var == nullptr) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "can't find gradient variable of Y"));
    }
    const Tensor* t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
    if (t == nullptr) {
      PADDLE_THROW(
          platform::errors::InvalidArgument("gradient variable of Y is empty"));
    }
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                   library);
  }
};

class InplaceABNOpMaker : public paddle::operators::BatchNormOpMaker {
 public:
  void Make() override {
    BatchNormOpMaker::Make();
    AddAttr<std::string>(
        "activation",
        "(enum string, default identity, can be identity|elu|leaky-relu) "
        "The activation type used for output candidate {h}_t.")
        .SetDefault("");
    AddAttr<float>("alpha",
                   "(float, default 1.0) Only used in inplace-abn kernel,"
                   "the activation type(identity|elu|leakyrelu) would be fused "
                   "with batch_norm, "
                   "this is the alpha value for elu|leakyrelu.")
        .SetDefault(0.1f);
    AddAttr<bool>("use_sync_bn",
                  "(bool, default false) Whether use synchronize batch "
                  "normalization.")
        .SetDefault(false);
  }
};

template <typename T>
class InplaceABNOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("Y", this->Output("Y"));
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));

    op->SetInput("Scale", this->Input("Scale"));
    op->SetInput("Bias", this->Input("Bias"));
    op->SetInput("SavedMean", this->Output("SavedMean"));
    op->SetInput("SavedVariance", this->Output("SavedVariance"));
188 189 190
    if (this->HasOutput("ReserveSpace")) {
      op->SetInput("ReserveSpace", this->Output("ReserveSpace"));
    }
K
Kaipeng Deng 已提交
191 192

    // used when setting use_global_stats True during training
193
    if (BOOST_GET_CONST(bool, this->GetAttr("use_global_stats"))) {
K
Kaipeng Deng 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206
      op->SetInput("Mean", this->Output("MeanOut"));
      op->SetInput("Variance", this->Output("VarianceOut"));
    }

    op->SetAttrMap(this->Attrs());

    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Scale"), this->InputGrad("Scale"));
    op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
  }
};

template <typename DeviceContext, typename T>
H
hong 已提交
207
class InplaceABNKernel : public framework::OpKernel<T> {
K
Kaipeng Deng 已提交
208 209 210 211 212 213 214 215 216
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Output<Tensor>("Y");
    PADDLE_ENFORCE_EQ(x, y, platform::errors::InvalidArgument(
                                "X and Y not inplaced in inplace mode"));
    auto activation =
        GetInplaceABNActivationType(ctx.Attr<std::string>("activation"));
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
H
hong 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

    auto* scale = ctx.Input<Tensor>("Scale");
    auto* bias = ctx.Input<Tensor>("Bias");
    auto* mean = ctx.Input<Tensor>("Mean");
    auto* variance = ctx.Input<Tensor>("Variance");

    auto momentum = ctx.Attr<float>("momentum");
    auto epsilon = ctx.Attr<float>("epsilon");
    auto data_layout = ctx.Attr<std::string>("data_layout");
    auto is_test = ctx.Attr<bool>("is_test");
    auto use_global_stats = ctx.Attr<bool>("use_global_stats");
    auto trainable_statistics = ctx.Attr<bool>("trainable_statistics");
    auto fuse_with_relu = ctx.Attr<bool>("fuse_with_relu");

    auto* mean_out = ctx.Output<Tensor>("MeanOut");
    auto* variance_out = ctx.Output<Tensor>("VarianceOut");
    auto* saved_mean = ctx.Output<Tensor>("SavedMean");
    auto* saved_variance = ctx.Output<Tensor>("SavedVariance");
    auto* reserve_space = ctx.Output<Tensor>("ReserveSpace");

    auto& dev_ctx = ctx.device_context<DeviceContext>();
    phi::BatchNormKernel<T>(
        static_cast<const typename framework::ConvertToPhiContext<
            DeviceContext>::TYPE&>(dev_ctx),
        *x, *scale, *bias, *mean, *variance, momentum, epsilon, data_layout,
        is_test, use_global_stats, trainable_statistics, fuse_with_relu, y,
        mean_out, variance_out, saved_mean, saved_variance, reserve_space);
K
Kaipeng Deng 已提交
244 245 246 247 248 249 250 251

    auto cur_y = EigenVector<T>::Flatten(*y);
    InplaceABNActivation<DeviceContext, T> functor;
    functor.Compute(ctx, activation, place, cur_y, cur_y);
  }
};

template <typename DeviceContext, typename T>
H
hong 已提交
252
class InplaceABNGradKernel : public framework::OpKernel<T> {
K
Kaipeng Deng 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* y = ctx.Input<Tensor>("Y");
    auto* d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    PADDLE_ENFORCE_EQ(d_x, d_y,
                      platform::errors::InvalidArgument(
                          "X@GRAD and Y@GRAD not inplaced in inplace mode"));
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
    auto activation =
        GetInplaceABNActivationType(ctx.Attr<std::string>("activation"));

    auto py = *y;
    auto pd_y = *d_y;
    auto cur_y = EigenVector<T>::Flatten(py);
    auto cur_dy = EigenVector<T>::Flatten(pd_y);

    InplaceABNActivation<DeviceContext, T> functor;
    functor.GradCompute(ctx, activation, place, cur_y, cur_y, cur_dy, cur_dy);

H
hong 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
    // BatchNormGradKernel<DeviceContext, T>::Compute(ctx);

    auto* scale = ctx.Input<Tensor>("Scale");
    auto* bias = ctx.Input<Tensor>("Bias");
    auto* saved_mean = ctx.Input<Tensor>("SavedMean");
    auto* saved_variance = ctx.Input<Tensor>("SavedVariance");

    auto momentum = ctx.Attr<float>("momentum");
    auto epsilon = ctx.Attr<float>("epsilon");
    auto data_layout = ctx.Attr<std::string>("data_layout");
    auto is_test = ctx.Attr<bool>("is_test");
    auto use_global_stats = ctx.Attr<bool>("use_global_stats");
    auto trainable_statistics = ctx.Attr<bool>("trainable_statistics");
    auto fuse_with_relu = ctx.Attr<bool>("fuse_with_relu");

    auto* scale_grad = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto* bias_grad = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    auto* reserve_space = ctx.Input<Tensor>("ReserveSpace");
    auto* mean = ctx.Input<Tensor>("ReserveSpace");
    auto* variance = ctx.Input<Tensor>("ReserveSpace");

    paddle::optional<const Tensor&> space_opt = paddle::none;
    paddle::optional<const Tensor&> mean_opt = paddle::none;
    paddle::optional<const Tensor&> variance_opt = paddle::none;

    if (reserve_space != nullptr) {
      space_opt = *reserve_space;
    }

    if (mean != nullptr) {
      mean_opt = *mean;
    }

    if (variance != nullptr) {
      variance_opt = *variance;
    }

    auto& dev_ctx = ctx.device_context<DeviceContext>();
    phi::BatchNormGradRawKernel<T>(
        static_cast<const typename framework::ConvertToPhiContext<
            DeviceContext>::TYPE&>(dev_ctx),
H
hong 已提交
315 316
        *y, *scale, *bias, mean_opt, variance_opt, *saved_mean, *saved_variance,
        space_opt, *d_y, momentum, epsilon, data_layout, is_test,
H
hong 已提交
317 318
        use_global_stats, trainable_statistics, fuse_with_relu, true, d_x,
        scale_grad, bias_grad);
K
Kaipeng Deng 已提交
319 320 321 322 323 324 325
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
326

327
DECLARE_INPLACE_OP_INFERER(InplaceAbnOpInplaceInferer, {"X", "Y"});
K
Kaipeng Deng 已提交
328 329 330
REGISTER_OPERATOR(inplace_abn, ops::InplaceABNOp, ops::InplaceABNOpMaker,
                  ops::BatchNormOpInferVarType,
                  ops::InplaceABNOpGradMaker<paddle::framework::OpDesc>,
331 332
                  ops::InplaceABNOpGradMaker<paddle::imperative::OpBase>,
                  InplaceAbnOpInplaceInferer)
K
Kaipeng Deng 已提交
333 334 335 336 337 338 339 340 341 342
REGISTER_OPERATOR(inplace_abn_grad, ops::InplaceABNGradOp)

REGISTER_OP_CPU_KERNEL(
    inplace_abn,
    ops::InplaceABNKernel<paddle::platform::CPUDeviceContext, float>,
    ops::InplaceABNKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    inplace_abn_grad,
    ops::InplaceABNGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::InplaceABNGradKernel<paddle::platform::CPUDeviceContext, double>);