inplace_abn_op.cc 10.3 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
//   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/inplace_abn_op.h"
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/operators/batch_norm_op.h"

namespace paddle {
namespace operators {

class InplaceABNOp : public paddle::operators::BatchNormOp {
 public:
  using paddle::operators::BatchNormOp::BatchNormOp;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
    // By default, the type of the scale, bias, mean,
    // and var tensors should both be float. (For float or float16 input tensor)
    // or double (For double input tensor).
    auto bn_param_type = framework::proto::VarType::FP32;
    if (input_data_type == framework::proto::VarType::FP64) {
      bn_param_type = framework::proto::VarType::FP64;
    }
    PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Scale")->type(),
                      platform::errors::InvalidArgument(
                          "Scale input should be of float type"));
    PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Bias")->type(),
                      platform::errors::InvalidArgument(
                          "Bias input should be of float type"));
    PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Mean")->type(),
                      platform::errors::InvalidArgument(
                          "Mean input should be of float type"));
    PADDLE_ENFORCE_EQ(bn_param_type, ctx.Input<Tensor>("Variance")->type(),
                      platform::errors::InvalidArgument(
                          "Variance input should be of float type"));

    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                   library);
  }
};

class InplaceABNGradOp : public paddle::operators::BatchNormGradOp {
 public:
  using paddle::operators::BatchNormGradOp::BatchNormGradOp;

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
  void InferShape(framework::InferShapeContext* ctx) const {
    // check input
    OP_INOUT_CHECK(ctx->HasInput("Scale"), "Input", "Scale", "InplaceABNGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")), "Input",
                   "Y@GRAD", "InplaceABNGrad");
    OP_INOUT_CHECK(ctx->HasInput("SavedMean"), "Input", "SavedMean",
                   "InplaceABNGrad");
    OP_INOUT_CHECK(ctx->HasInput("SavedVariance"), "Input", "SavedVariance",
                   "InplaceABNGrad");

    // check output
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
                   "X@GRAD", "InplaceABNGrad");

    const bool has_scale_grad = ctx->HasOutput(framework::GradVarName("Scale"));
    const bool has_bias_grad = ctx->HasOutput(framework::GradVarName("Bias"));

    PADDLE_ENFORCE_EQ(
        has_scale_grad, has_bias_grad,
        platform::errors::InvalidArgument(
            "Output(Scale@GRAD) and Output(Bias@GRAD) must be null "
            "or not be null at same time. But now, "
            "has Scale@Grad=[%d], has Bias@GRAD=[%d]",
            has_scale_grad, has_bias_grad));

    const bool use_global_stats = ctx->Attrs().Get<bool>("use_global_stats");
    if (use_global_stats) {
      PADDLE_ENFORCE_EQ(
          !ctx->Attrs().Get<bool>("use_mkldnn"), true,
          platform::errors::InvalidArgument(
              "Using global stats during training is not supported "
              "in gradient op kernel of batch_norm_mkldnn_op now."));
    }

    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "InplaceABNGrad");
    const auto y_dims = ctx->GetInputDim("Y");
    const DataLayout data_layout = framework::StringToDataLayout(
        ctx->Attrs().Get<std::string>("data_layout"));

    const int C =
        ((this->IsMKLDNNType() == true) || (data_layout == DataLayout::kNCHW)
             ? y_dims[1]
             : y_dims[y_dims.size() - 1]);

    ctx->SetOutputDim(framework::GradVarName("X"), y_dims);
    // has_scale_grad == has_bias_grad, judge has_scale_grad is enough
    if (has_scale_grad) {
      ctx->SetOutputDim(framework::GradVarName("Scale"), {C});
      ctx->SetOutputDim(framework::GradVarName("Bias"), {C});
    }
  }

K
Kaipeng Deng 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    const auto* var = ctx.InputVar(framework::GradVarName("Y"));
    auto input_data_type = ctx.Input<Tensor>("Y")->type();
    if (var == nullptr) {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "can't find gradient variable of Y"));
    }
    const Tensor* t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
    if (t == nullptr) {
      PADDLE_THROW(
          platform::errors::InvalidArgument("gradient variable of Y is empty"));
    }
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                   library);
  }
};

class InplaceABNOpMaker : public paddle::operators::BatchNormOpMaker {
 public:
  void Make() override {
    BatchNormOpMaker::Make();
    AddAttr<std::string>(
        "activation",
        "(enum string, default identity, can be identity|elu|leaky-relu) "
        "The activation type used for output candidate {h}_t.")
        .SetDefault("");
    AddAttr<float>("alpha",
                   "(float, default 1.0) Only used in inplace-abn kernel,"
                   "the activation type(identity|elu|leakyrelu) would be fused "
                   "with batch_norm, "
                   "this is the alpha value for elu|leakyrelu.")
        .SetDefault(0.1f);
    AddAttr<bool>("use_sync_bn",
                  "(bool, default false) Whether use synchronize batch "
                  "normalization.")
        .SetDefault(false);
  }
};

template <typename T>
class InplaceABNOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("Y", this->Output("Y"));
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));

    op->SetInput("Scale", this->Input("Scale"));
    op->SetInput("Bias", this->Input("Bias"));
    op->SetInput("SavedMean", this->Output("SavedMean"));
    op->SetInput("SavedVariance", this->Output("SavedVariance"));

    // used when setting use_global_stats True during training
    if (boost::get<bool>(this->GetAttr("use_global_stats"))) {
      op->SetInput("Mean", this->Output("MeanOut"));
      op->SetInput("Variance", this->Output("VarianceOut"));
    }

    op->SetAttrMap(this->Attrs());

    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Scale"), this->InputGrad("Scale"));
    op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
  }
};

template <typename DeviceContext, typename T>
class InplaceABNKernel
    : public paddle::operators::BatchNormKernel<DeviceContext, T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Output<Tensor>("Y");
    PADDLE_ENFORCE_EQ(x, y, platform::errors::InvalidArgument(
                                "X and Y not inplaced in inplace mode"));
    auto activation =
        GetInplaceABNActivationType(ctx.Attr<std::string>("activation"));
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
    BatchNormKernel<DeviceContext, T>::Compute(ctx);

    auto cur_y = EigenVector<T>::Flatten(*y);
    InplaceABNActivation<DeviceContext, T> functor;
    functor.Compute(ctx, activation, place, cur_y, cur_y);
  }
};

template <typename DeviceContext, typename T>
class InplaceABNGradKernel
    : public paddle::operators::BatchNormGradKernel<DeviceContext, T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* y = ctx.Input<Tensor>("Y");
    auto* d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    auto* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    PADDLE_ENFORCE_EQ(d_x, d_y,
                      platform::errors::InvalidArgument(
                          "X@GRAD and Y@GRAD not inplaced in inplace mode"));
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
    auto activation =
        GetInplaceABNActivationType(ctx.Attr<std::string>("activation"));

    auto py = *y;
    auto pd_y = *d_y;
    auto cur_y = EigenVector<T>::Flatten(py);
    auto cur_dy = EigenVector<T>::Flatten(pd_y);

    InplaceABNActivation<DeviceContext, T> functor;
    functor.GradCompute(ctx, activation, place, cur_y, cur_y, cur_dy, cur_dy);

    BatchNormGradKernel<DeviceContext, T>::Compute(ctx);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(inplace_abn, ops::InplaceABNOp, ops::InplaceABNOpMaker,
                  ops::BatchNormOpInferVarType,
                  ops::InplaceABNOpGradMaker<paddle::framework::OpDesc>,
                  ops::InplaceABNOpGradMaker<paddle::imperative::OpBase>)
REGISTER_OPERATOR(inplace_abn_grad, ops::InplaceABNGradOp)

REGISTER_OP_CPU_KERNEL(
    inplace_abn,
    ops::InplaceABNKernel<paddle::platform::CPUDeviceContext, float>,
    ops::InplaceABNKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    inplace_abn_grad,
    ops::InplaceABNGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::InplaceABNGradKernel<paddle::platform::CPUDeviceContext, double>);