test_imperative_gnn.py 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
import numpy as np
import sys

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
X
polish  
Xin Pan 已提交
23
from paddle.fluid.optimizer import AdamOptimizer
24
from test_imperative_base import new_program_scope
L
lujun 已提交
25
from paddle.fluid.dygraph.base import to_variable
26
from paddle.fluid.framework import _test_eager_guard
27 28 29 30 31 32


def gen_data():
    pass


33
class GraphConv(fluid.Layer):
34

35 36 37 38 39 40 41 42 43
    def __init__(self, name_scope, in_features, out_features):
        super(GraphConv, self).__init__(name_scope)

        self._in_features = in_features
        self._out_features = out_features
        self.weight = self.create_parameter(
            attr=None,
            dtype='float32',
            shape=[self._in_features, self._out_features])
44 45 46
        self.bias = self.create_parameter(attr=None,
                                          dtype='float32',
                                          shape=[self._out_features])
47 48 49 50 51 52 53

    def forward(self, features, adj):
        support = fluid.layers.matmul(features, self.weight)
        # TODO(panyx0718): sparse matmul?
        return fluid.layers.matmul(adj, support) + self.bias


54
class GCN(fluid.Layer):
55

56 57 58 59 60 61 62 63 64 65
    def __init__(self, name_scope, num_hidden):
        super(GCN, self).__init__(name_scope)
        self.gc = GraphConv(self.full_name(), num_hidden, 32)
        self.gc2 = GraphConv(self.full_name(), 32, 10)

    def forward(self, x, adj):
        x = fluid.layers.relu(self.gc(x, adj))
        return self.gc2(x, adj)


L
lujun 已提交
66
class TestDygraphGNN(unittest.TestCase):
67

68
    def func_gnn_float32(self):
C
cnn 已提交
69
        paddle.seed(90)
L
Leo Chen 已提交
70
        paddle.framework.random._manual_program_seed(90)
X
polish  
Xin Pan 已提交
71 72 73 74 75
        startup = fluid.Program()
        main = fluid.Program()

        scope = fluid.core.Scope()
        with new_program_scope(main=main, startup=startup, scope=scope):
76 77 78 79
            features = fluid.layers.data(name='features',
                                         shape=[1, 100, 50],
                                         dtype='float32',
                                         append_batch_size=False)
X
polish  
Xin Pan 已提交
80
            # Use selected rows when it's supported.
81 82 83 84 85 86 87 88
            adj = fluid.layers.data(name='adj',
                                    shape=[1, 100, 100],
                                    dtype='float32',
                                    append_batch_size=False)
            labels = fluid.layers.data(name='labels',
                                       shape=[100, 1],
                                       dtype='int64',
                                       append_batch_size=False)
X
polish  
Xin Pan 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

            model = GCN('test_gcn', 50)
            logits = model(features, adj)
            logits = fluid.layers.reshape(logits, logits.shape[1:])
            # In other example, it's nll with log_softmax. However, paddle's
            # log_loss only supports binary classification now.
            loss = fluid.layers.softmax_with_cross_entropy(logits, labels)
            loss = fluid.layers.reduce_sum(loss)

            adam = AdamOptimizer(learning_rate=1e-3)
            adam.minimize(loss)
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            exe.run(startup)
            static_loss = exe.run(feed={
104 105 106 107 108 109
                'features':
                np.ones([1, 100, 50], dtype=np.float32),
                'adj':
                np.ones([1, 100, 100], dtype=np.float32),
                'labels':
                np.ones([100, 1], dtype=np.int64)
X
polish  
Xin Pan 已提交
110 111 112 113 114 115
            },
                                  fetch_list=[loss])[0]

            static_weight = np.array(
                scope.find_var(model.gc.weight.name).get_tensor())

L
lujun 已提交
116
        with fluid.dygraph.guard():
C
cnn 已提交
117
            paddle.seed(90)
L
Leo Chen 已提交
118
            paddle.framework.random._manual_program_seed(90)
119

120
            features = np.ones([1, 100, 50], dtype=np.float32)
X
polish  
Xin Pan 已提交
121
            # Use selected rows when it's supported.
122 123
            adj = np.ones([1, 100, 100], dtype=np.float32)
            labels = np.ones([100, 1], dtype=np.int64)
124 125 126 127 128 129

            model = GCN('test_gcn', 50)
            logits = model(to_variable(features), to_variable(adj))
            logits = fluid.layers.reshape(logits, logits.shape[1:])
            # In other example, it's nll with log_softmax. However, paddle's
            # log_loss only supports binary classification now.
130 131
            loss = fluid.layers.softmax_with_cross_entropy(
                logits, to_variable(labels))
132
            loss = fluid.layers.reduce_sum(loss)
133
            loss.backward()
134 135
            adam = AdamOptimizer(learning_rate=1e-3,
                                 parameter_list=model.parameters())
136

X
polish  
Xin Pan 已提交
137
            adam.minimize(loss)
138
            model.clear_gradients()
139 140
            loss_value = loss.numpy()
            model_gc_weight_value = model.gc.weight.numpy()
141 142

        with fluid.dygraph.guard():
C
cnn 已提交
143
            paddle.seed(90)
L
Leo Chen 已提交
144
            paddle.framework.random._manual_program_seed(90)
145

146
            features2 = np.ones([1, 100, 50], dtype=np.float32)
147
            # Use selected rows when it's supported.
148 149
            adj2 = np.ones([1, 100, 100], dtype=np.float32)
            labels2 = np.ones([100, 1], dtype=np.int64)
150 151 152 153 154 155 156 157 158

            model2 = GCN('test_gcn', 50)
            logits2 = model2(to_variable(features2), to_variable(adj2))
            logits2 = fluid.layers.reshape(logits2, logits2.shape[1:])
            # In other example, it's nll with log_softmax. However, paddle's
            # log_loss only supports binary classification now.
            loss2 = fluid.layers.softmax_with_cross_entropy(
                logits2, to_variable(labels2))
            loss2 = fluid.layers.reduce_sum(loss2)
159
            loss2.backward()
160 161
            adam2 = AdamOptimizer(learning_rate=1e-3,
                                  parameter_list=model2.parameters())
162
            adam2.minimize(loss2)
163
            model2.clear_gradients()
164 165 166 167 168 169 170 171
            loss2_value = loss2.numpy()
            model2_gc_weight_value = model2.gc.weight.numpy()

        self.assertEqual(static_loss, loss_value)
        self.assertTrue(np.allclose(static_weight, model_gc_weight_value))
        self.assertEqual(static_loss, loss2_value)
        self.assertTrue(np.allclose(static_weight, model2_gc_weight_value))
        sys.stderr.write('%s %s\n' % (static_loss, loss_value))
172

173 174 175 176 177
    def test_gnn_float32(self):
        with _test_eager_guard():
            self.func_gnn_float32()
        self.func_gnn_float32()

178 179 180

if __name__ == '__main__':
    unittest.main()