test_imperative_gnn.py 6.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
import numpy as np
import sys

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
X
polish  
Xin Pan 已提交
23
from paddle.fluid.optimizer import AdamOptimizer
24
from test_imperative_base import new_program_scope
L
lujun 已提交
25
from paddle.fluid.dygraph.base import to_variable
26 27 28 29 30 31


def gen_data():
    pass


32
class GraphConv(fluid.Layer):
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
    def __init__(self, name_scope, in_features, out_features):
        super(GraphConv, self).__init__(name_scope)

        self._in_features = in_features
        self._out_features = out_features
        self.weight = self.create_parameter(
            attr=None,
            dtype='float32',
            shape=[self._in_features, self._out_features])
        self.bias = self.create_parameter(
            attr=None, dtype='float32', shape=[self._out_features])

    def forward(self, features, adj):
        support = fluid.layers.matmul(features, self.weight)
        # TODO(panyx0718): sparse matmul?
        return fluid.layers.matmul(adj, support) + self.bias


51
class GCN(fluid.Layer):
52 53 54 55 56 57 58 59 60 61
    def __init__(self, name_scope, num_hidden):
        super(GCN, self).__init__(name_scope)
        self.gc = GraphConv(self.full_name(), num_hidden, 32)
        self.gc2 = GraphConv(self.full_name(), 32, 10)

    def forward(self, x, adj):
        x = fluid.layers.relu(self.gc(x, adj))
        return self.gc2(x, adj)


L
lujun 已提交
62
class TestDygraphGNN(unittest.TestCase):
63 64 65
    def test_gnn_float32(self):
        seed = 90

X
polish  
Xin Pan 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
        startup = fluid.Program()
        startup.random_seed = seed
        main = fluid.Program()
        main.random_seed = seed

        scope = fluid.core.Scope()
        with new_program_scope(main=main, startup=startup, scope=scope):
            features = fluid.layers.data(
                name='features',
                shape=[1, 100, 50],
                dtype='float32',
                append_batch_size=False)
            # Use selected rows when it's supported.
            adj = fluid.layers.data(
                name='adj',
                shape=[1, 100, 100],
                dtype='float32',
                append_batch_size=False)
            labels = fluid.layers.data(
                name='labels',
                shape=[100, 1],
                dtype='int64',
                append_batch_size=False)

            model = GCN('test_gcn', 50)
            logits = model(features, adj)
            logits = fluid.layers.reshape(logits, logits.shape[1:])
            # In other example, it's nll with log_softmax. However, paddle's
            # log_loss only supports binary classification now.
            loss = fluid.layers.softmax_with_cross_entropy(logits, labels)
            loss = fluid.layers.reduce_sum(loss)

            adam = AdamOptimizer(learning_rate=1e-3)
            adam.minimize(loss)
            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
            exe.run(startup)
            static_loss = exe.run(feed={
                'features': np.zeros(
                    [1, 100, 50], dtype=np.float32),
                'adj': np.zeros(
                    [1, 100, 100], dtype=np.float32),
                'labels': np.zeros(
                    [100, 1], dtype=np.int64)
            },
                                  fetch_list=[loss])[0]

            static_weight = np.array(
                scope.find_var(model.gc.weight.name).get_tensor())

L
lujun 已提交
116
        with fluid.dygraph.guard():
117 118 119 120
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

            features = np.zeros([1, 100, 50], dtype=np.float32)
X
polish  
Xin Pan 已提交
121
            # Use selected rows when it's supported.
122 123 124 125 126 127 128 129 130 131 132
            adj = np.zeros([1, 100, 100], dtype=np.float32)
            labels = np.zeros([100, 1], dtype=np.int64)

            model = GCN('test_gcn', 50)
            logits = model(to_variable(features), to_variable(adj))
            logits = fluid.layers.reshape(logits, logits.shape[1:])
            # In other example, it's nll with log_softmax. However, paddle's
            # log_loss only supports binary classification now.
            loss = fluid.layers.softmax_with_cross_entropy(logits,
                                                           to_variable(labels))
            loss = fluid.layers.reduce_sum(loss)
X
polish  
Xin Pan 已提交
133 134
            adam = AdamOptimizer(learning_rate=1e-3)
            adam.minimize(loss)
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

        with fluid.dygraph.guard():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

            features2 = np.zeros([1, 100, 50], dtype=np.float32)
            # Use selected rows when it's supported.
            adj2 = np.zeros([1, 100, 100], dtype=np.float32)
            labels2 = np.zeros([100, 1], dtype=np.int64)

            model2 = GCN('test_gcn', 50)
            logits2 = model2(to_variable(features2), to_variable(adj2))
            logits2 = fluid.layers.reshape(logits2, logits2.shape[1:])
            # In other example, it's nll with log_softmax. However, paddle's
            # log_loss only supports binary classification now.
            loss2 = fluid.layers.softmax_with_cross_entropy(
                logits2, to_variable(labels2))
            loss2 = fluid.layers.reduce_sum(loss2)
            adam2 = AdamOptimizer(learning_rate=1e-3)
            adam2.minimize(loss2)

        self.assertEqual(static_loss, loss.numpy())
        self.assertTrue(np.allclose(static_weight, model.gc.weight.numpy()))
        self.assertEqual(static_loss, loss2.numpy())
        self.assertTrue(np.allclose(static_weight, model2.gc.weight.numpy()))
        sys.stderr.write('%s %s\n' % (static_loss, loss.numpy()))
161 162 163 164


if __name__ == '__main__':
    unittest.main()