executor.py 39.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
Zeng Jinle 已提交
17
import logging
18 19
import os
import multiprocessing
D
dzhwinter 已提交
20
import numpy as np
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
22
import six
23
from .framework import Program, default_main_program, Variable
24
from . import core
25 26
from . import compiler
from .. import compat as cpt
27
from .trainer_factory import TrainerFactory
28

T
Tink_Y 已提交
29
__all__ = ['Executor', 'global_scope', 'scope_guard']
Y
Yu Yang 已提交
30

Y
Yu Yang 已提交
31
g_scope = core.Scope()
F
flame 已提交
32 33
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
Y
Yu Yang 已提交
34

Y
Yu Yang 已提交
35

Y
Yang Yu 已提交
36
def global_scope():
Y
yuyang18 已提交
37 38 39 40
    """
    Get the global/default scope instance. There are a lot of APIs use
    :code:`global_scope` as its default value, e.g., :code:`Executor.run`

41 42 43 44 45 46 47 48 49
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          numpy.array(fluid.global_scope().find_var("data").get_tensor())

Y
yuyang18 已提交
50 51 52
    Returns:
        Scope: The global/default scope instance.
    """
Y
Yang Yu 已提交
53 54 55
    return g_scope


56
def _switch_scope(scope):
Y
Yang Yu 已提交
57 58 59 60 61 62
    global g_scope
    ex = g_scope
    g_scope = scope
    return ex


S
rename  
sneaxiy 已提交
63
@signature_safe_contextmanager
Y
Yang Yu 已提交
64
def scope_guard(scope):
Y
yuyang18 已提交
65 66 67 68
    """
    Change the global/default scope instance by Python `with` statement. All
    variable in runtime will assigned to the new scope.

L
lujun 已提交
69 70 71
    Args:
        scope: The new global/default scope.

Y
yuyang18 已提交
72
    Examples:
73 74
        .. code-block:: python

75
            import paddle.fluid as fluid
L
lujun 已提交
76
            import numpy
Y
yuyang18 已提交
77

L
lujun 已提交
78 79 80 81
            new_scope = fluid.Scope()
            with fluid.scope_guard(new_scope):
                 fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
            numpy.array(new_scope.find_var("data").get_tensor())
Y
yuyang18 已提交
82
    """
L
lujun 已提交
83

84
    ex = _switch_scope(scope)
Y
Yang Yu 已提交
85
    yield
86
    _switch_scope(ex)
Y
Yang Yu 已提交
87 88


D
dzhwinter 已提交
89
def as_numpy(tensor):
90 91 92
    """
    Convert a Tensor to a numpy.ndarray, its only support Tensor without LoD information.
    For higher dimensional sequence data, please use LoDTensor directly.
93

94
    Examples:
95 96 97 98 99 100 101 102 103 104
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          new_scope = fluid.Scope()
          with fluid.scope_guard(new_scope):
              fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
          tensor = new_scope.find_var("data").get_tensor()
          fluid.executor.as_numpy(tensor) # or numpy.array(new_scope.find_var("data").get_tensor())
105 106 107 108 109 110 111

    Args:
       tensor(Variable): a instance of Tensor

    Returns:
        numpy.ndarray
    """
C
chengduo 已提交
112 113
    if isinstance(tensor, core.LoDTensorArray):
        return [as_numpy(t) for t in tensor]
D
dzhwinter 已提交
114 115 116 117
    if isinstance(tensor, list):
        return [as_numpy(t) for t in tensor]
    assert isinstance(tensor, core.LoDTensor)
    lod = tensor.lod()
118
    if len(lod) > 0:
D
dzhwinter 已提交
119
        raise RuntimeError("Some of your fetched tensors hold LoD information. \
120 121 122
            They can not be completely cast to Python ndarray. \
            Please set the parameter 'return_numpy' as 'False' to \
            return LoDTensor itself directly.")
Q
qingqing01 已提交
123 124 125 126
    if tensor._is_initialized():
        return np.array(tensor)
    else:
        return None
D
dzhwinter 已提交
127 128


129 130 131 132 133 134 135 136 137 138 139 140
def has_feed_operators(block, feed_targets, feed_holder_name):
    """ Check whether the block already has feed operators.

    Return false if the block does not have any feed operators.
    If some feed operators have been prepended to the block, check that
    the info contained in these feed operators matches the feed_targets
    and feed_holder_name. Raise exception when any mismatch is found.
    Return true when the block has feed operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        feed_targets: a dictionary of {feed_target_name: feed_target_data}
X
xuwei06 已提交
141 142
        feed_holder_name: the name of the variable that holds the data of
            all feed targets. The type of this feed_holder variable is
143 144 145
            FEED_MINIBATCH, which is essentially vector<LoDTensor>.

    Returns:
X
xuwei06 已提交
146
        A boolean value that indicates whether a block has feed operators
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
        that match the info contained in feed_targets and feed_holder_name.
    """

    feed_count = 0
    for op in block.ops:
        if op.desc.type() == 'feed':
            feed_count += 1
            assert op.desc.input('X')[0] == feed_holder_name
            feed_target_name = op.desc.output('Out')[0]
            if feed_target_name not in feed_targets:
                raise Exception("'feed_targets' does not have {} variable".
                                format(feed_target_name))
        else:
            break
    if feed_count > 0 and feed_count != len(feed_targets):
        raise Exception(
            "Feed operators in program desc do not match 'feed_targets'")
    return feed_count > 0


def has_fetch_operators(block, fetch_targets, fetch_holder_name):
    """ Check whether the block already has fetch operators.
X
xuwei06 已提交
169

170 171 172 173 174 175 176 177 178
    Return false if the block does not have any fetch operators.
    If some fetch operators have been appended to the block, check that
    the info contained in these fetch operators matches the fetch_targets
    and fetch_holder_name. Raise exception when any mismatch is found.
    Return true when the block has fetch operators with matching info.

    Args:
        block: a block instance (typically global block of a program)
        fetch_targets: a dictionary of {fetch_target_name: fetch_target_data}
X
xuwei06 已提交
179 180 181
        fetch_holder_name: the name of the variable that holds the data of
            all fetch targets. The type of this fetch_holder variable is
            FETCH_LIST, which is essentially vector<LoDTensor>.
182

X
xuwei06 已提交
183 184 185
    Return:
        A boolean value that indicates whether a block has fetch operators
        that match the info contained in fetch_targets and fetch_holder_name.
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
    """

    fetch_count = 0
    for op in block.ops:
        if op.desc.type() == 'fetch':
            fetch_count += 1
            assert op.desc.output('Out')[0] == fetch_holder_name
            fetch_target_name = op.desc.input('X')[0]
            if fetch_target_name not in [
                    var.desc.name() for var in fetch_targets
            ]:
                raise Exception("'fetch_targets' does not have {} variable".
                                format(fetch_target_name))
            idx = op.desc.attr('col')
            assert fetch_target_name == fetch_targets[idx].desc.name()
    if fetch_count > 0 and fetch_count != len(fetch_targets):
        raise Exception(
            "Fetch operators in program desc do not match 'fetch_targets'")
    return fetch_count > 0


W
Wu Yi 已提交
207
def _fetch_var(name, scope=None, return_numpy=True):
X
xuwei06 已提交
208
    """
C
chengduoZH 已提交
209 210 211
    Fetch the value of the variable with the given name from the
    given scope.

X
xuwei06 已提交
212
    Args:
213 214 215 216
        name(str): name of the variable. Typically, only persistable variables
            can be found in the scope used for running the program.
        scope(core.Scope|None): scope object. It should be the scope where
            you pass to Executor.run() when running your program.
C
chengduoZH 已提交
217 218 219 220
            If None, global_scope() will be used. Default None.
        return_numpy(bool): whether convert the tensor to numpy.ndarray.
            Default True.

X
xuwei06 已提交
221 222 223 224 225 226
    Returns:
       LodTensor|numpy.ndarray
    """
    assert isinstance(name, str)
    if scope is None:
        scope = global_scope()
S
sneaxiy 已提交
227
    assert isinstance(scope, core._Scope)
X
xuwei06 已提交
228

Y
Yibing Liu 已提交
229
    var = scope.find_var(name)
230 231 232 233
    assert var is not None, (
        "Cannot find " + name + " in scope. Perhaps you need to make the"
        " variable persistable by using var.persistable = True in your"
        " program.")
X
xuwei06 已提交
234 235 236 237 238 239
    tensor = var.get_tensor()
    if return_numpy:
        tensor = as_numpy(tensor)
    return tensor


X
polish  
Xin Pan 已提交
240 241 242 243 244 245 246 247 248
def _to_name_str(var):
    if isinstance(var, Variable):
        return var.desc.name()
    elif isinstance(var, str):
        return var
    elif isinstance(var, six.string_types):
        return str(var)
    else:
        raise TypeError(str(var) + " should be Variable or str")
Q
qiaolongfei 已提交
249 250


251 252 253 254
def _get_strong_program_cache_key(program, feed, fetch_list):
    return str(id(program)) + _get_program_cache_key(feed, fetch_list)


X
polish  
Xin Pan 已提交
255 256 257
def _get_program_cache_key(feed, fetch_list):
    feed_var_names = list(feed.keys())
    fetch_var_names = list(map(_to_name_str, fetch_list))
Q
qiaolongfei 已提交
258 259 260 261

    return str(feed_var_names + fetch_var_names)


W
Wu Yi 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
def _as_lodtensor(data, place):
    """
        Convert numpy.ndarray to Tensor, its only support Tensor without LoD information.
        For higher dimensional sequence data, please use LoDTensor directly.

        Examples:
            >>> import paddle.fluid as fluid
            >>> place = fluid.CPUPlace()
            >>> exe = fluid.executor(place)
            >>> data = np.array(size=(100, 200, 300))
            >>> np_outs = map(lambda x: fluid.executor._as_lodtensor(x, place), data)
            >>>     ...

        Args:
            data(numpy.ndarray): a instance of array

        Returns:
            LoDTensor
        """
    if isinstance(data, list):
        raise RuntimeError("Some of your feed data hold LoD information. \
                They can not be completely cast from a list of Python \
                ndarray to LoDTensor. Please convert data to LoDTensor \
                directly before feeding the data.\
                ")
    # single tensor case
    tensor = core.LoDTensor()
    tensor.set(data, place)
    return tensor


Y
Yu Yang 已提交
293
class Executor(object):
294
    """
295 296 297 298 299 300 301 302 303 304 305
    An Executor in Python, supports single/multiple-GPU running,
    and single/multiple-CPU running. Python executor takes a program,
    adds feed operators and fetch operators to this program according
    to feed map and fetch_list. Feed map provides input data for the
    program. fetch_list provides the variables(or names) that user wants
    to get after program runs. Note: the executor will run all operators
    in the program but not only the operators dependent by the fetch_list.
    It stores the global variables into the global scope, and creates a
    local scope for the temporary variables. The contents in local scope
    may be discarded after every minibatch forward/backward finished.
    But the global scope variables will be persistent through different runs.
S
Fix doc  
sneaxiy 已提交
306

307
    Examples:
S
Fix doc  
sneaxiy 已提交
308 309
        .. code-block:: python

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
          import paddle.fluid as fluid
          import paddle.fluid.compiler as compiler
          import numpy
          import os

          use_cuda = True
          place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

          # Run the startup program once and only once.
          # Not need to optimize/compile the startup program.
          startup_program.random_seed=1
          exe.run(startup_program)

          # Run the main program directly without compile.
          x = numpy.random.random(size=(10, 1)).astype('float32')
          loss_data, = exe.run(train_program,
                               feed={"X": x},
                               fetch_list=[loss.name])

          # Or, compiled the program and run. See `CompiledProgram`
          # for more detail.
          # NOTE: If you use CPU to run the program, you need
          # to specify the CPU_NUM, otherwise, fluid will use
          # all the number of the logic core as the CPU_NUM,
          # in that case, the batch size of the input should be
          # greater than CPU_NUM, if not, the process will be
          # failed by an exception.
          if not use_cuda:
              os.environ['CPU_NUM'] = str(2)

          compiled_prog = compiler.CompiledProgram(
              train_program).with_data_parallel(
              loss_name=loss.name)
          loss_data, = exe.run(compiled_prog,
                               feed={"X": x},
                               fetch_list=[loss.name])
X
add doc  
Xin Pan 已提交
355

356
    Args:
357 358
        place(fluid.CPUPlace|fluid.CUDAPlace(n)): indicate the executor run on which device.

359 360
    """

D
dzhwinter 已提交
361 362
    def __init__(self, place):
        self.place = place
Q
qiaolongfei 已提交
363
        self.program_caches = dict()
364
        self.ctx_caches = dict()
365 366
        self.scope_caches = dict()
        self.var_caches = dict()
367 368 369
        p = core.Place()
        p.set_place(self.place)
        self._default_executor = core.Executor(p)
Y
Yancey1989 已提交
370
        self._closed = False
D
dzhwinter 已提交
371

372 373 374 375 376 377
    def _get_var_cache(self, program_cache_key):
        return self.var_caches.get(program_cache_key, None)

    def _get_scope_cache(self, program_cache_key):
        return self.scope_caches.get(program_cache_key, None)

378 379 380
    def _get_ctx_cache(self, program_cache_key):
        return self.ctx_caches.get(program_cache_key, None)

Q
Qiao Longfei 已提交
381 382 383 384 385 386
    def _get_program_cache(self, program_cache_key):
        return self.program_caches.get(program_cache_key, None)

    def _add_program_cache(self, program_cache_key, program):
        self.program_caches[program_cache_key] = program

387 388 389
    def _add_ctx_cache(self, ctx_cache_key, ctx):
        self.ctx_caches[ctx_cache_key] = ctx

390 391 392 393 394 395
    def _add_scope_cache(self, scope_cache_key, scope):
        self.scope_caches[scope_cache_key] = scope

    def _add_var_cache(self, var_cache_key, var):
        self.var_caches[var_cache_key] = var

Q
Qiao Longfei 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
    def _add_feed_fetch_ops(self, program, feed, fetch_list, feed_var_name,
                            fetch_var_name):
        tmp_program = program.clone()

        global_block = tmp_program.global_block()

        if feed_var_name in global_block.vars:
            feed_var = global_block.var(feed_var_name)
        else:
            feed_var = global_block.create_var(
                name=feed_var_name,
                type=core.VarDesc.VarType.FEED_MINIBATCH,
                persistable=True)

        if fetch_var_name in global_block.vars:
            fetch_var = global_block.var(fetch_var_name)
        else:
            fetch_var = global_block.create_var(
                name=fetch_var_name,
                type=core.VarDesc.VarType.FETCH_LIST,
                persistable=True)

        # prepend feed operators
        if not has_feed_operators(global_block, feed, feed_var_name):
            for i, name in enumerate(feed):
                out = global_block.var(name)
W
Wu Yi 已提交
422
                global_block._prepend_op(
Q
Qiao Longfei 已提交
423 424 425 426 427 428 429 430
                    type='feed',
                    inputs={'X': [feed_var]},
                    outputs={'Out': [out]},
                    attrs={'col': i})

        # append fetch_operators
        if not has_fetch_operators(global_block, fetch_list, fetch_var_name):
            for i, var in enumerate(fetch_list):
M
minqiyang 已提交
431 432 433
                assert isinstance(var, Variable) or isinstance(
                    var, six.string_types), (
                        "Wrong type for fetch_list[%s]: %s" % (i, type(var)))
Q
Qiao Longfei 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
                global_block.append_op(
                    type='fetch',
                    inputs={'X': [var]},
                    outputs={'Out': [fetch_var]},
                    attrs={'col': i})

        return tmp_program

    def _feed_data(self, program, feed, feed_var_name, scope):
        # feed var to framework
        for op in program.global_block().ops:
            if op.desc.type() == 'feed':
                feed_target_name = op.desc.output('Out')[0]
                cur_feed = feed[feed_target_name]
                if not isinstance(cur_feed, core.LoDTensor):
W
Wu Yi 已提交
449
                    cur_feed = _as_lodtensor(cur_feed, self.place)
Q
Qiao Longfei 已提交
450 451 452 453 454 455 456 457
                idx = op.desc.attr('col')
                core.set_feed_variable(scope, cur_feed, feed_var_name, idx)
            else:
                break

    def _fetch_data(self, fetch_list, fetch_var_name, scope):
        outs = [
            core.get_fetch_variable(scope, fetch_var_name, i)
M
minqiyang 已提交
458
            for i in six.moves.range(len(fetch_list))
Q
Qiao Longfei 已提交
459 460 461
        ]
        return outs

S
Fix doc  
sneaxiy 已提交
462 463 464 465 466 467
    '''
    TODO(typhoonzero): Define "no longer use" meaning? Can user create
    a new Executor for the same program and run?
    TODO(panyx0718): Why ParallelExecutor doesn't have close?
    '''

Y
Yancey1989 已提交
468 469 470 471
    def close(self):
        """
        Close this executor.

X
fix  
Xin Pan 已提交
472
        You can no longer use this executor after calling this method.
473 474 475 476 477 478 479 480 481 482 483 484
        For the distributed training, this method would free the resource
        on PServers related to the current Trainer.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              cpu = fluid.CPUPlace()
              exe = fluid.Executor(cpu)
              # execute training or testing
              exe.close()
Y
Yancey1989 已提交
485
        """
486 487
        if not self._closed:
            self._default_executor.close()
Y
Yancey1989 已提交
488
            self._closed = True
Y
Yancey1989 已提交
489

X
fix  
Xin Pan 已提交
490
    def _run_parallel(self, program, scope, feed, fetch_list, fetch_var_name,
X
polish  
Xin Pan 已提交
491
                      return_numpy):
492
        exe = program._executor
493 494 495 496 497 498 499 500 501 502 503
        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
                if not isinstance(feed_tensor, core.LoDTensor):
                    feed_tensor = core.LoDTensor()
                    # always set to CPU place, since the tensor need to be splitted
                    # it is fast in CPU
                    feed_tensor.set(feed[feed_name], core.CPUPlace())
                feed_tensor_dict[feed_name] = feed_tensor

504
            exe.feed_and_split_tensor_into_local_scopes(feed_tensor_dict)
505
        elif isinstance(feed, list) or isinstance(feed, tuple):
X
fix  
Xin Pan 已提交
506
            if len(feed) != len(program._places):
507 508 509 510 511 512 513 514 515 516 517 518 519 520
                raise ValueError(
                    "Feed a list of tensor, the list should be the same size as places"
                )

            res = list()
            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
                        "Each element of feed list should be a dict")
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
                    if not isinstance(tensor, core.LoDTensor):
                        tmp = core.LoDTensor()
X
fix  
Xin Pan 已提交
521
                        tmp.set(tensor, program._places[i])
522 523 524
                        tensor = tmp
                    res_dict[feed_name] = tensor
                res.append(res_dict)
525
            exe.feed_tensors_into_local_scopes(res)
526

X
polish  
Xin Pan 已提交
527
        fetch_var_names = list(map(_to_name_str, fetch_list))
528
        exe.run(fetch_var_names, fetch_var_name)
529 530 531 532 533 534
        arr = scope.find_var(fetch_var_name).get_lod_tensor_array()

        if return_numpy:
            return as_numpy(arr)
        return [arr[i] for i in range(len(arr))]

Z
Zeng Jinle 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
    def _check_fetch_vars_persistable(self, program, fetch_list):
        for var in fetch_list:
            if isinstance(var, Variable):
                persistable = var.persistable
            else:
                block_num = program.desc.num_blocks()
                persistable = None
                var_name = cpt.to_bytes(var)
                for i in six.moves.range(block_num):
                    var_desc = program.desc.block(i).find_var(var_name)
                    if var_desc:
                        persistable = var_desc.persistable()
                        break
                assert persistable is not None, "Variable {} is not found".format(
                    var)

            if not persistable:
                logging.warn("""
     Detect that memory optimize or inplace is enabled, but the some variables in the fetch
     list is not persistable, you may get wrong fetched value, or an exeception may be thrown
     about cannot find variable of the fetch list. 

     TO FIX this:
         # Sample
         conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None) 
         # if you need to fetch conv1, then:
         conv1.persistable = True

                 """)

Y
Yu Yang 已提交
565
    def run(self,
Y
Yu Yang 已提交
566
            program=None,
567 568
            feed=None,
            fetch_list=None,
Y
Yu Yang 已提交
569
            feed_var_name='feed',
Y
Yu Yang 已提交
570
            fetch_var_name='fetch',
D
dzhwinter 已提交
571
            scope=None,
572 573
            return_numpy=True,
            use_program_cache=False):
574
        """
575 576 577 578
        Run program by this Executor. Feed data by feed map, fetch result by
        fetch_list. Python executor takes a program, add feed operators and
        fetch operators to this program according to feed map and fetch_list.
        Feed map provides input data for the program. fetch_list provides
579 580
        the variables(or names) that user want to get after program run.

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
        Note: the executor will run all operators in the program but not
        only the operators dependent by the fetch_list.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              import numpy

              # First create the Executor.
              place = fluid.CPUPlace() # fluid.CUDAPlace(0)
              exe = fluid.Executor(place)

              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              adam = fluid.optimizer.Adam()
              adam.minimize(loss)

              # Run the startup program once and only once.
              exe.run(fluid.default_startup_program())

              x = numpy.random.random(size=(10, 1)).astype('float32')
              outs = exe.run(feed={'X': x},
                             fetch_list=[loss.name])
Q
qiaolongfei 已提交
606

607
        Args:
X
add doc  
Xin Pan 已提交
608
            program(Program|CompiledProgram): the program that need to run,
X
fix  
Xin Pan 已提交
609
                if not provided, then default_main_program (not compiled) will be used.
X
add doc  
Xin Pan 已提交
610
            feed(dict): feed variable map, e.g. {"image": ImageData, "label": LabelData}
Z
Zeng Jinle 已提交
611 612 613 614 615 616 617 618
            fetch_list(list): a list of variable or variable names that user 
                wants to get, this method will return them according to this list.
            feed_var_name(str): the name for the input variable of 
                feed Operator.
            fetch_var_name(str): the name for the output variable of 
                fetch Operator.
            scope(Scope): the scope used to run this program, you can switch 
                it to different scope. default is global_scope
619
            return_numpy(bool): if convert the fetched tensor to numpy
Z
Zeng Jinle 已提交
620 621 622 623 624 625
            use_program_cache(bool): whether to use the cached program 
                settings across batches. Setting it be true would be faster 
                only when (1) the program is not compiled with data parallel, 
                and (2) program, feed variable names and fetch_list variable 
                names do not changed compared to the last step. 
                
626 627 628
        Returns:

            list(numpy.array): fetch result according to fetch_list.
629
        """
Y
Yancey1989 已提交
630 631 632 633

        if self._closed:
            raise RuntimeError("Attempted to use a closed Executor")

634 635
        if scope is None:
            scope = global_scope()
X
polish  
Xin Pan 已提交
636 637
        if fetch_list is None:
            fetch_list = []
638

X
polish  
Xin Pan 已提交
639 640
        compiled = isinstance(program, compiler.CompiledProgram)
        # For backward compatibility, run directly.
641 642 643
        if not compiled:
            return self._run(
                program,
644
                self._default_executor,
645 646 647 648 649 650 651
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
                use_program_cache=use_program_cache)
Z
Zeng Jinle 已提交
652 653 654 655 656
        else:
            if fetch_list and program._is_data_parallel and program._program and (
                    program._build_strategy.memory_optimize or
                    program._build_strategy.enable_inplace):
                self._check_fetch_vars_persistable(program._program, fetch_list)
657 658 659 660

        program._compile(scope, self.place)
        if program._is_data_parallel:
            return self._run_parallel(
X
fix  
Xin Pan 已提交
661
                program,
662 663 664
                scope=scope,
                feed=feed,
                fetch_list=fetch_list,
X
polish  
Xin Pan 已提交
665
                fetch_var_name=fetch_var_name,
666
                return_numpy=return_numpy)
F
flame 已提交
667
        elif program._is_inference:
X
Xin Pan 已提交
668
            return self._run_inference(program._executor, feed)
669
        else:
X
Xin Pan 已提交
670 671
            # TODO(panyx0718): Can compile program to optimize executor
            # performance.
X
Xin Pan 已提交
672
            # TODO(panyx0718): executor should be able to run graph.
X
Xin Pan 已提交
673
            assert program._program, "CompiledProgram is compiled from graph, can only run with_data_parallel."
674
            # use_program_cache is not valid with CompiledProgram
675 676
            return self._run(
                program._program,
677
                self._default_executor,
678 679 680 681 682 683
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name,
                scope=scope,
                return_numpy=return_numpy,
684
                use_program_cache=False)
685

686 687
    def _run(self, program, exe, feed, fetch_list, feed_var_name,
             fetch_var_name, scope, return_numpy, use_program_cache):
688

689 690
        if feed is None:
            feed = {}
S
sneaxiy 已提交
691 692 693 694
        elif isinstance(feed, (list, tuple)):
            assert len(feed) == 1, "Not compiled with data parallel"
            feed = feed[0]

Q
qiaolongfei 已提交
695
        if not isinstance(feed, dict):
D
dzhwinter 已提交
696 697 698
            raise TypeError(
                "feed requires dict as its Parameter. But you passed in %s" %
                (type(feed)))
Y
Yu Yang 已提交
699
        if program is None:
Y
Yu Yang 已提交
700
            program = default_main_program()
Y
Yu Yang 已提交
701

Y
Yu Yang 已提交
702
        if not isinstance(program, Program):
D
dzhwinter 已提交
703 704 705
            raise TypeError(
                "Executor requires Program as its Parameter. But you passed in %s"
                % (type(program)))
Y
Yu Yang 已提交
706

707
        if use_program_cache:
708
            cache_key = _get_strong_program_cache_key(program, feed, fetch_list)
Q
Qiao Longfei 已提交
709
            cached_program = self._get_program_cache(cache_key)
710
            cached_ctx = self._get_ctx_cache(cache_key)
711 712
            cached_scope = self._get_scope_cache(cache_key)
            cached_var = self._get_var_cache(cache_key)
Q
Qiao Longfei 已提交
713 714 715 716 717 718 719 720
            if cached_program is None:
                cached_program = self._add_feed_fetch_ops(
                    program=program,
                    feed=feed,
                    fetch_list=fetch_list,
                    feed_var_name=feed_var_name,
                    fetch_var_name=fetch_var_name)
                self._add_program_cache(cache_key, cached_program)
721
                fetch_list_str = list(map(_to_name_str, fetch_list))
722
                cached_ctx = self._default_executor.prepare_ctx_cache(
723 724 725 726 727 728 729 730 731
                    cached_program.desc, 0, fetch_list_str, False)
                cached_var = self._default_executor.create_variables(
                    cached_program.desc, scope, 0)
                # currently, we cache program, vars, sub_scope here
                # we suppose that in a life cycle of training, a user
                # will not create many programs. So, here the basic
                # rule of caching is to cache all unseen (program, var, scope)
                # when a user use use_program_cache.
                cached_scope = scope.new_scope()
732
                self._add_ctx_cache(cache_key, cached_ctx)
733 734
                self._add_var_cache(cache_key, cached_var)
                self._add_scope_cache(cache_key, cached_scope)
Q
Qiao Longfei 已提交
735
            program = cached_program
736
            ctx = cached_ctx
737 738
            scope = cached_scope
            var = cached_var
739
        else:
Q
Qiao Longfei 已提交
740 741 742 743 744 745 746 747
            program = self._add_feed_fetch_ops(
                program=program,
                feed=feed,
                fetch_list=fetch_list,
                feed_var_name=feed_var_name,
                fetch_var_name=fetch_var_name)

        self._feed_data(program, feed, feed_var_name, scope)
748 749 750
        if not use_program_cache:
            exe.run(program.desc, scope, 0, True, True, fetch_var_name)
        else:
751
            exe.run_cached_prepared_ctx(ctx, scope, False, False, False)
Q
Qiao Longfei 已提交
752
        outs = self._fetch_data(fetch_list, fetch_var_name, scope)
D
dzhwinter 已提交
753 754 755
        if return_numpy:
            outs = as_numpy(outs)
        return outs
F
flame 已提交
756

X
Xin Pan 已提交
757 758
    def _run_inference(self, exe, feed):
        return exe.run(feed)
D
dongdaxiang 已提交
759

760 761
    def _dump_debug_info(self, program=None, trainer=None):
        with open(str(id(program)) + "_train_desc.prototxt", "w") as fout:
762
            fout.write(str(trainer))
763 764 765 766 767 768 769 770 771 772 773 774 775
        if program._fleet_opt:
            with open("fleet_desc.prototxt", "w") as fout:
                fout.write(str(program._fleet_opt["fleet_desc"]))

    def _prepare_trainer(self,
                         program=None,
                         dataset=None,
                         scope=None,
                         thread=0,
                         debug=False,
                         fetch_list=None,
                         fetch_info=None,
                         print_period=100):
D
dongdaxiang 已提交
776 777 778 779
        if scope is None:
            scope = global_scope()
        if fetch_list is None:
            fetch_list = []
D
dongdaxiang 已提交
780 781 782
        if fetch_info is None:
            fetch_info = []
        assert len(fetch_list) == len(fetch_info)
D
dongdaxiang 已提交
783 784
        compiled = isinstance(program, compiler.CompiledProgram)
        if not compiled:
785 786 787 788 789 790
            # TODO: Need a better way to distinguish and specify different execution mode
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program._pipeline_opt)
            else:
                trainer = TrainerFactory()._create_trainer(program._fleet_opt)
791
            trainer._set_program(program)
792
        else:
793 794 795 796 797 798
            if program._pipeline_opt:
                trainer = TrainerFactory()._create_trainer(
                    program.program._pipeline_opt)
            else:
                trainer = TrainerFactory()._create_trainer(
                    program.program._fleet_opt)
799
            trainer._set_program(program.program)
800 801

        # The following thread_num-determined logic will be deprecated
802
        if thread <= 0:
D
dongdaxiang 已提交
803 804
            if dataset.thread_num <= 0:
                raise RuntimeError(
805 806
                    "You should set thread num first, either in Dataset"
                    "or in Executor.train_from_dataset")
D
dongdaxiang 已提交
807
            else:
808
                trainer._set_thread(dataset.thread_num)
809
        else:
810
            trainer._set_thread(thread)
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830

        # Adjust the reader size for small file num
        if program._pipeline_opt:
            dataset.set_thread(thread *
                               program._pipeline_opt["concurrency_list"][0])
            file_size = len(dataset.dataset.get_filelist())
            if file_size < thread:
                thread = file_size
                print(
                    "Pipeline: setting the pipeline num to %d is enough because there are only %d files"
                    % (file_size, file_size))
            if file_size < thread * program._pipeline_opt["concurrency_list"][
                    0]:
                print(
                    "Pipeline: setting the 1st element in concurrency_list to %d is enough because there are only %d files"
                    % (file_size / thread, file_size))
                program._pipeline_opt["concurrency_list"][
                    0] = file_size / thread
                dataset.set_thread(
                    program._pipeline_opt["concurrency_list"][0] * thread)
831 832
        trainer._set_debug(debug)
        trainer._set_fetch_var_and_info(fetch_list, fetch_info, print_period)
833
        return scope, trainer
834 835 836 837 838 839

    def infer_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
840 841 842 843
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
                           print_period=100):
844 845 846 847 848 849
        """
        The document of infer_from_dataset is almost the same as
        train_from_dataset, except that in distributed training,
        push gradients will be disabled in infer_from_dataset.
        infer_from_dataset() can be used for evaluation in multi-thread
        very easily.
850

851 852 853 854 855
        Args:
            program(Program|CompiledProgram): the program that needs to be run,
               if not provided, then default_main_program (not compiled) will be used.
            dataset(paddle.fluid.Dataset): dataset created outside this function,
               a user should provide a well-defined dataset before calling this function.
856
               Please check the document of Dataset if needed. default is None
857 858 859
            scope(Scope): the scope used to run this program, you can switch it to different scope
               for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. The actual number
860 861
               of thread will be min(Dataset.thread_num, thread) if thread > 0, default is 0
            debug(bool): whether a user wants to run infer_from_dataset, default is False
862
            fetch_list(Variable List): fetch variable list, each variable
863 864 865
                                       will be printed during training, default is None
            fetch_info(String List): print information for each variable, default is None
            print_period(int): the number of mini-batches for each print, default is 100
866

867 868 869 870
        Returns:
            None

        Examples:
871 872

            .. code-block:: python
873

874
                import paddle.fluid as fluid
875 876

                place = fluid.CPUPlace() # you can set place = fluid.CUDAPlace(0) to use gpu
877
                exe = fluid.Executor(place)
878 879
                x = fluid.layers.data(name="x", shape=[10, 10], dtype="int64")
                y = fluid.layers.data(name="y", shape=[1], dtype="int64", lod_level=1)
880 881
                dataset = fluid.DatasetFactory().create_dataset()
                dataset.set_use_var([x, y])
882 883
                dataset.set_thread(1)
                filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
884 885 886 887
                dataset.set_filelist(filelist)
                exe.run(fluid.default_startup_program())
                exe.infer_from_dataset(program=fluid.default_main_program(),
                                       dataset=dataset)        
888

889
        """
890 891 892
        if dataset == None:
            raise RuntimeError("dataset is needed and should be initialized")

893
        scope, trainer = self._prepare_trainer(
894 895 896 897 898 899 900 901
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)
902
        trainer._set_infer(True)
903
        trainer._gen_trainer_desc()
904
        dataset._prepare_to_run()
905
        self._dump_debug_info(program=program, trainer=trainer)
906 907 908
        self._default_executor.run_from_dataset(program.desc, scope,
                                                dataset.dataset,
                                                trainer._desc())
909
        return None
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945

    def train_from_dataset(self,
                           program=None,
                           dataset=None,
                           scope=None,
                           thread=0,
                           debug=False,
                           fetch_list=None,
                           fetch_info=None,
                           print_period=100):
        """
        Train from a pre-defined Dataset. Dataset is defined in paddle.fluid.dataset.
        Given a program, either a program or compiled program, train_from_dataset will
        consume all data samples in dataset. Input scope can be given by users. By default,
        scope is global_scope(). The total number of thread run in training is `thread`.
        Thread number used in training will be minimum value of threadnum in Dataset and
        the value of thread in this interface. Debug can be set so that executor will display
        Run-Time for all operators and the throughputs of current training task.
        
        Note: train_from_dataset will destroy all resources created within executor for each run.

        Args:
            program(Program|CompiledProgram): the program that needs to be run,
               if not provided, then default_main_program (not compiled) will be used.
            dataset(paddle.fluid.Dataset): dataset created outside this function,
               a user should provide a well-defined dataset before calling this function.
               Please check the document of Dataset if needed.
            scope(Scope): the scope used to run this program, you can switch it to different scope
               for each run. default is global_scope
            thread(int): number of thread a user wants to run in this function. The actual number
               of thread will be min(Dataset.thread_num, thread)
            debug(bool): whether a user wants to run train_from_dataset 
            fetch_list(Variable List): fetch variable list, each variable
                                       will be printed during training
            fetch_info(String List): print information for each variable
            print_period(int): the number of mini-batches for each print
946 947 948

        Returns:
            None
949
        
950
        Examples:
951
        
952 953 954
            .. code-block:: python

              import paddle.fluid as fluid
955 956

              place = fluid.CPUPlace() # you can set place = fluid.CUDAPlace(0) to use gpu
957
              exe = fluid.Executor(place)
958 959
              x = fluid.layers.data(name="x", shape=[10, 10], dtype="int64")
              y = fluid.layers.data(name="y", shape=[1], dtype="int64", lod_level=1)
960 961
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_use_var([x, y])
962 963
              dataset.set_thread(1)
              filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
964 965 966 967
              dataset.set_filelist(filelist)
              exe.run(fluid.default_startup_program())
              exe.train_from_dataset(program=fluid.default_main_program(),
                                     dataset=dataset)
968 969

        """
970 971 972
        if dataset == None:
            raise RuntimeError("dataset is need and should be initialized")

973
        scope, trainer = self._prepare_trainer(
974 975 976 977 978 979 980 981
            program=program,
            dataset=dataset,
            scope=scope,
            thread=thread,
            debug=debug,
            fetch_list=fetch_list,
            fetch_info=fetch_info,
            print_period=print_period)
982
        trainer._gen_trainer_desc()
D
dongdaxiang 已提交
983
        dataset._prepare_to_run()
984
        self._dump_debug_info(program=program, trainer=trainer)
D
dongdaxiang 已提交
985 986 987
        self._default_executor.run_from_dataset(program.desc, scope,
                                                dataset.dataset,
                                                trainer._desc())
988
        return None