slice_mkldnn_op.cc 8.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/utils.h"
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

using paddle::framework::Tensor;

template <typename T>
class SliceMKLDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    this->RunKernel(ctx);
  }

  void RunKernel(const framework::ExecutionContext& ctx) const {
    const auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* x = ctx.Input<Tensor>("Input");
    auto* out = ctx.Output<Tensor>("Out");

38
    auto x_vec_dims = phi::vectorize(x->dims());
39 40 41 42 43 44 45 46 47 48 49 50

    auto axes_int = ctx.Attr<std::vector<int>>("axes");
    auto starts_int = ctx.Attr<std::vector<int>>("starts");
    auto ends_int = ctx.Attr<std::vector<int>>("ends");

    std::vector<int64_t> axes(ctx.Attr<std::vector<int>>("axes").begin(),
                              ctx.Attr<std::vector<int>>("axes").end());
    std::vector<int64_t> starts(ctx.Attr<std::vector<int>>("starts").begin(),
                                ctx.Attr<std::vector<int>>("starts").end());
    std::vector<int64_t> ends(ctx.Attr<std::vector<int>>("ends").begin(),
                              ctx.Attr<std::vector<int>>("ends").end());

51 52 53 54 55 56 57
    auto starts_tensor_list = ctx.MultiInput<Tensor>("StartsTensorList");
    if (ctx.HasInput("StartsTensor")) {
      starts = GetDataFromTensor<int64_t>(ctx.Input<Tensor>("StartsTensor"));
    } else if (starts_tensor_list.size() > 0) {
      starts = GetDataFromTensorList<int64_t>(starts_tensor_list);
    }

58 59
    auto decrease_axis = ctx.Attr<std::vector<int>>("decrease_axis");

60 61 62 63 64 65 66
    auto ends_tensor_list = ctx.MultiInput<Tensor>("EndsTensorList");
    if (ctx.HasInput("EndsTensor")) {
      ends = GetDataFromTensor<int64_t>(ctx.Input<Tensor>("EndsTensor"));
    } else if (ends_tensor_list.size() > 0) {
      ends = GetDataFromTensorList<int64_t>(ends_tensor_list);
    }

67 68 69 70 71 72 73 74 75 76 77
    std::vector<int64_t> offsets(x_vec_dims.size(), 0);
    std::vector<int64_t> slice_dims(x_vec_dims);

    for (size_t i = 0; i < axes.size(); ++i) {
      starts[i] = starts[i] < 0 ? x_vec_dims[axes[i]] + starts[i] : starts[i];
      ends[i] = ends[i] < 0 ? x_vec_dims[axes[i]] + ends[i]
                            : std::min(ends[i], x_vec_dims[axes[i]]);
      offsets[axes[i]] = starts[i];
      slice_dims[axes[i]] = ends[i] - starts[i];
    }

78
    out->Resize(phi::make_ddim(slice_dims));
79

80 81
    dnnl::memory::data_type x_type =
        framework::ToMKLDNNDataType(framework::TransToProtoVarType(x->dtype()));
82

83
    platform::ReorderMKLDNNHandler reorder_handler(
84 85 86
        x_vec_dims,
        framework::TransToProtoVarType(x->dtype()),
        x_type,
87
        onednn_engine);
88 89

    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
90
        x->mem_desc(), platform::to_void_cast(x->data<T>()));
91 92
    auto slice_mem_p = reorder_handler.AcquireSubmemory(
        slice_dims, offsets, reorder_src_memory_p);
93
    auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
94 95 96
        out,
        slice_dims,
        platform::GetPlainMKLDNNFormat(x_vec_dims.size()),
97
        ctx.GetPlace());
98 99 100 101 102 103

    auto reorder_p =
        reorder_handler.AcquireReorder(reorder_dst_memory_p, slice_mem_p);
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    reorder_p->execute(astream, *slice_mem_p, *reorder_dst_memory_p);

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    std::vector<int64_t> new_out_dims(slice_dims.size() - decrease_axis.size());

    if (new_out_dims.size() == 0) {
      new_out_dims.emplace_back(1);
    } else {
      for (const auto& axis : decrease_axis) {
        slice_dims[axis] = 0;
      }

      int i = 0;
      for (const auto& slice_dim : slice_dims) {
        if (slice_dim != 0) new_out_dims[i++] = slice_dim;
      }
    }

    astream.wait();
120
    out->Resize(phi::make_ddim(new_out_dims));
121
    out->set_mem_desc(reorder_dst_memory_p->get_desc().reshape(new_out_dims));
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
  }
};
template <typename T>
class SliceGradMKLDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    this->RunKernel(ctx);
  }

  void RunKernel(const framework::ExecutionContext& ctx) const {
    const auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("Input"));

139 140
    auto dx_vec_dims = phi::vectorize(dx->dims());
    auto dout_vec_dims = phi::vectorize(dout->dims());
141 142 143 144 145 146 147 148 149 150 151 152

    auto axes_int = ctx.Attr<std::vector<int>>("axes");
    auto starts_int = ctx.Attr<std::vector<int>>("starts");
    auto ends_int = ctx.Attr<std::vector<int>>("ends");

    std::vector<int64_t> axes(ctx.Attr<std::vector<int>>("axes").begin(),
                              ctx.Attr<std::vector<int>>("axes").end());
    std::vector<int64_t> starts(ctx.Attr<std::vector<int>>("starts").begin(),
                                ctx.Attr<std::vector<int>>("starts").end());
    std::vector<int64_t> ends(ctx.Attr<std::vector<int>>("ends").begin(),
                              ctx.Attr<std::vector<int>>("ends").end());

153 154 155 156 157 158 159 160 161 162 163 164 165 166
    auto starts_tensor_list = ctx.MultiInput<Tensor>("StartsTensorList");
    if (ctx.HasInput("StartsTensor")) {
      starts = GetDataFromTensor<int64_t>(ctx.Input<Tensor>("StartsTensor"));
    } else if (starts_tensor_list.size() > 0) {
      starts = GetDataFromTensorList<int64_t>(starts_tensor_list);
    }

    auto ends_tensor_list = ctx.MultiInput<Tensor>("EndsTensorList");
    if (ctx.HasInput("EndsTensor")) {
      ends = GetDataFromTensor<int64_t>(ctx.Input<Tensor>("EndsTensor"));
    } else if (ends_tensor_list.size() > 0) {
      ends = GetDataFromTensorList<int64_t>(ends_tensor_list);
    }

167 168 169 170 171 172 173 174 175 176 177 178 179
    auto decrease_axis = ctx.Attr<std::vector<int>>("decrease_axis");

    std::vector<int64_t> offsets(dx_vec_dims.size(), 0);
    std::vector<int64_t> slice_dims(dx_vec_dims);

    for (size_t i = 0; i < axes.size(); ++i) {
      starts[i] = starts[i] < 0 ? dx_vec_dims[axes[i]] + starts[i] : starts[i];
      ends[i] = ends[i] < 0 ? dx_vec_dims[axes[i]] + ends[i]
                            : std::min(ends[i], dx_vec_dims[axes[i]]);
      offsets[axes[i]] = starts[i];
      slice_dims[axes[i]] = ends[i] - starts[i];
    }

180 181
    dnnl::memory::data_type dout_type = framework::ToMKLDNNDataType(
        framework::TransToProtoVarType(dout->dtype()));
182

183
    platform::ReorderMKLDNNHandler reorder_handler(
184 185 186
        slice_dims,
        framework::TransToProtoVarType(dout->dtype()),
        dout_type,
187
        onednn_engine);
188 189

    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
190 191
        dout->mem_desc().reshape(slice_dims),
        platform::to_void_cast(dout->data<T>()));
192
    auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
193 194 195
        dx,
        dx_vec_dims,
        platform::GetPlainMKLDNNFormat(dx_vec_dims.size()),
196
        ctx.GetPlace());
197 198
    memset(dx->data<T>(), 0, reorder_dst_memory_p->get_desc().get_size());

199 200
    auto slice_mem_p = reorder_handler.AcquireSubmemory(
        slice_dims, offsets, reorder_dst_memory_p);
201 202 203 204 205 206 207

    auto reorder_p =
        reorder_handler.AcquireReorder(slice_mem_p, reorder_src_memory_p);
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    reorder_p->execute(astream, *reorder_src_memory_p, *slice_mem_p);
    astream.wait();

208
    dx->set_mem_desc(reorder_dst_memory_p->get_desc());
209 210 211 212 213 214
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
215 216 217
REGISTER_OP_KERNEL(slice,
                   MKLDNN,
                   paddle::platform::CPUPlace,
218
                   ops::SliceMKLDNNKernel<float>,
Z
Zuza 已提交
219 220
                   ops::SliceMKLDNNKernel<int8_t>,
                   ops::SliceMKLDNNKernel<uint8_t>,
221 222 223
                   ops::SliceMKLDNNKernel<paddle::platform::bfloat16>);

namespace ops = paddle::operators;
224 225 226
REGISTER_OP_KERNEL(slice_grad,
                   MKLDNN,
                   paddle::platform::CPUPlace,
227
                   ops::SliceGradMKLDNNKernel<float>,
228
                   ops::SliceGradMKLDNNKernel<paddle::platform::bfloat16>);