slice_mkldnn_op.cc 8.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/utils.h"
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

using paddle::framework::Tensor;

template <typename T>
class SliceMKLDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    this->RunKernel(ctx);
  }

  void RunKernel(const framework::ExecutionContext& ctx) const {
    const auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* x = ctx.Input<Tensor>("Input");
    auto* out = ctx.Output<Tensor>("Out");

38
    auto x_vec_dims = phi::vectorize(x->dims());
39 40 41 42 43 44 45 46 47 48 49 50

    auto axes_int = ctx.Attr<std::vector<int>>("axes");
    auto starts_int = ctx.Attr<std::vector<int>>("starts");
    auto ends_int = ctx.Attr<std::vector<int>>("ends");

    std::vector<int64_t> axes(ctx.Attr<std::vector<int>>("axes").begin(),
                              ctx.Attr<std::vector<int>>("axes").end());
    std::vector<int64_t> starts(ctx.Attr<std::vector<int>>("starts").begin(),
                                ctx.Attr<std::vector<int>>("starts").end());
    std::vector<int64_t> ends(ctx.Attr<std::vector<int>>("ends").begin(),
                              ctx.Attr<std::vector<int>>("ends").end());

51 52 53 54 55 56 57
    auto starts_tensor_list = ctx.MultiInput<Tensor>("StartsTensorList");
    if (ctx.HasInput("StartsTensor")) {
      starts = GetDataFromTensor<int64_t>(ctx.Input<Tensor>("StartsTensor"));
    } else if (starts_tensor_list.size() > 0) {
      starts = GetDataFromTensorList<int64_t>(starts_tensor_list);
    }

58 59
    auto decrease_axis = ctx.Attr<std::vector<int>>("decrease_axis");

60 61 62 63 64 65 66
    auto ends_tensor_list = ctx.MultiInput<Tensor>("EndsTensorList");
    if (ctx.HasInput("EndsTensor")) {
      ends = GetDataFromTensor<int64_t>(ctx.Input<Tensor>("EndsTensor"));
    } else if (ends_tensor_list.size() > 0) {
      ends = GetDataFromTensorList<int64_t>(ends_tensor_list);
    }

67 68 69 70 71 72 73 74 75 76 77
    std::vector<int64_t> offsets(x_vec_dims.size(), 0);
    std::vector<int64_t> slice_dims(x_vec_dims);

    for (size_t i = 0; i < axes.size(); ++i) {
      starts[i] = starts[i] < 0 ? x_vec_dims[axes[i]] + starts[i] : starts[i];
      ends[i] = ends[i] < 0 ? x_vec_dims[axes[i]] + ends[i]
                            : std::min(ends[i], x_vec_dims[axes[i]]);
      offsets[axes[i]] = starts[i];
      slice_dims[axes[i]] = ends[i] - starts[i];
    }

78
    out->Resize(phi::make_ddim(slice_dims));
79

80 81
    dnnl::memory::data_type x_type =
        framework::ToMKLDNNDataType(framework::TransToProtoVarType(x->dtype()));
82

83 84 85
    platform::ReorderMKLDNNHandler reorder_handler(
        x_vec_dims, framework::TransToProtoVarType(x->dtype()), x_type,
        onednn_engine);
86 87

    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
88
        x->mem_desc(), platform::to_void_cast(x->data<T>()));
89 90 91
    auto slice_mem_p = reorder_handler.AcquireSubmemory(slice_dims, offsets,
                                                        reorder_src_memory_p);
    auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
92 93
        out, slice_dims, platform::GetPlainMKLDNNFormat(x_vec_dims.size()),
        ctx.GetPlace());
94 95 96 97 98 99

    auto reorder_p =
        reorder_handler.AcquireReorder(reorder_dst_memory_p, slice_mem_p);
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    reorder_p->execute(astream, *slice_mem_p, *reorder_dst_memory_p);

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    std::vector<int64_t> new_out_dims(slice_dims.size() - decrease_axis.size());

    if (new_out_dims.size() == 0) {
      new_out_dims.emplace_back(1);
    } else {
      for (const auto& axis : decrease_axis) {
        slice_dims[axis] = 0;
      }

      int i = 0;
      for (const auto& slice_dim : slice_dims) {
        if (slice_dim != 0) new_out_dims[i++] = slice_dim;
      }
    }

    astream.wait();
116
    out->Resize(phi::make_ddim(new_out_dims));
117
    out->set_mem_desc(reorder_dst_memory_p->get_desc().reshape(new_out_dims));
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
  }
};
template <typename T>
class SliceGradMKLDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    this->RunKernel(ctx);
  }

  void RunKernel(const framework::ExecutionContext& ctx) const {
    const auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("Input"));

135 136
    auto dx_vec_dims = phi::vectorize(dx->dims());
    auto dout_vec_dims = phi::vectorize(dout->dims());
137 138 139 140 141 142 143 144 145 146 147 148

    auto axes_int = ctx.Attr<std::vector<int>>("axes");
    auto starts_int = ctx.Attr<std::vector<int>>("starts");
    auto ends_int = ctx.Attr<std::vector<int>>("ends");

    std::vector<int64_t> axes(ctx.Attr<std::vector<int>>("axes").begin(),
                              ctx.Attr<std::vector<int>>("axes").end());
    std::vector<int64_t> starts(ctx.Attr<std::vector<int>>("starts").begin(),
                                ctx.Attr<std::vector<int>>("starts").end());
    std::vector<int64_t> ends(ctx.Attr<std::vector<int>>("ends").begin(),
                              ctx.Attr<std::vector<int>>("ends").end());

149 150 151 152 153 154 155 156 157 158 159 160 161 162
    auto starts_tensor_list = ctx.MultiInput<Tensor>("StartsTensorList");
    if (ctx.HasInput("StartsTensor")) {
      starts = GetDataFromTensor<int64_t>(ctx.Input<Tensor>("StartsTensor"));
    } else if (starts_tensor_list.size() > 0) {
      starts = GetDataFromTensorList<int64_t>(starts_tensor_list);
    }

    auto ends_tensor_list = ctx.MultiInput<Tensor>("EndsTensorList");
    if (ctx.HasInput("EndsTensor")) {
      ends = GetDataFromTensor<int64_t>(ctx.Input<Tensor>("EndsTensor"));
    } else if (ends_tensor_list.size() > 0) {
      ends = GetDataFromTensorList<int64_t>(ends_tensor_list);
    }

163 164 165 166 167 168 169 170 171 172 173 174 175
    auto decrease_axis = ctx.Attr<std::vector<int>>("decrease_axis");

    std::vector<int64_t> offsets(dx_vec_dims.size(), 0);
    std::vector<int64_t> slice_dims(dx_vec_dims);

    for (size_t i = 0; i < axes.size(); ++i) {
      starts[i] = starts[i] < 0 ? dx_vec_dims[axes[i]] + starts[i] : starts[i];
      ends[i] = ends[i] < 0 ? dx_vec_dims[axes[i]] + ends[i]
                            : std::min(ends[i], dx_vec_dims[axes[i]]);
      offsets[axes[i]] = starts[i];
      slice_dims[axes[i]] = ends[i] - starts[i];
    }

176 177
    dnnl::memory::data_type dout_type = framework::ToMKLDNNDataType(
        framework::TransToProtoVarType(dout->dtype()));
178

179 180 181
    platform::ReorderMKLDNNHandler reorder_handler(
        slice_dims, framework::TransToProtoVarType(dout->dtype()), dout_type,
        onednn_engine);
182 183

    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
184 185
        dout->mem_desc().reshape(slice_dims),
        platform::to_void_cast(dout->data<T>()));
186
    auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
187 188
        dx, dx_vec_dims, platform::GetPlainMKLDNNFormat(dx_vec_dims.size()),
        ctx.GetPlace());
189 190 191 192 193 194 195 196 197 198 199
    memset(dx->data<T>(), 0, reorder_dst_memory_p->get_desc().get_size());

    auto slice_mem_p = reorder_handler.AcquireSubmemory(slice_dims, offsets,
                                                        reorder_dst_memory_p);

    auto reorder_p =
        reorder_handler.AcquireReorder(slice_mem_p, reorder_src_memory_p);
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    reorder_p->execute(astream, *reorder_src_memory_p, *slice_mem_p);
    astream.wait();

200
    dx->set_mem_desc(reorder_dst_memory_p->get_desc());
201 202 203 204 205 206 207 208
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_KERNEL(slice, MKLDNN, paddle::platform::CPUPlace,
                   ops::SliceMKLDNNKernel<float>,
Z
Zuza 已提交
209 210
                   ops::SliceMKLDNNKernel<int8_t>,
                   ops::SliceMKLDNNKernel<uint8_t>,
211 212 213 214 215
                   ops::SliceMKLDNNKernel<paddle::platform::bfloat16>);

namespace ops = paddle::operators;
REGISTER_OP_KERNEL(slice_grad, MKLDNN, paddle::platform::CPUPlace,
                   ops::SliceGradMKLDNNKernel<float>,
216
                   ops::SliceGradMKLDNNKernel<paddle::platform::bfloat16>);