layer_norm_op.cc 11.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

S
sneaxiy 已提交
15
#include <memory>
F
furnace 已提交
16
#include <string>
17

H
hong 已提交
18
#include "paddle/fluid/framework/op_registry.h"
C
chengduoZH 已提交
19

20 21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

C
chengduoZH 已提交
24 25 26 27 28 29 30 31 32 33 34 35
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

class LayerNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
36 37 38
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "LayerNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "LayerNorm");
    OP_INOUT_CHECK(ctx->HasOutput("Mean"), "Output", "Mean", "LayerNorm");
39 40
    OP_INOUT_CHECK(
        ctx->HasOutput("Variance"), "Output", "Variance", "LayerNorm");
C
chengduoZH 已提交
41

C
chengduoZH 已提交
42 43
    auto x_dim = ctx->GetInputDim("X");
    auto begin_norm_axis = ctx->Attrs().Get<int>("begin_norm_axis");
44
    PADDLE_ENFORCE_LT(
45 46
        begin_norm_axis,
        x_dim.size(),
47 48 49 50
        platform::errors::InvalidArgument(
            "'begin_norm_axis' must be less than the dimensions of X,"
            "But received 'begin_norm_axis' is [%d],"
            "received the dimensions of X is [%d].",
51 52
            begin_norm_axis,
            x_dim.size()));
C
chengduoZH 已提交
53

54
    auto matrix_dim = phi::flatten_to_2d(x_dim, begin_norm_axis);
C
chengduoZH 已提交
55
    int left = static_cast<int>(matrix_dim[0]);
C
chengduoZH 已提交
56
    int right = static_cast<int>(matrix_dim[1]);
C
chengduoZH 已提交
57
    if (ctx->HasInput("Scale")) {
58 59
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(),
                        1,
60 61 62 63 64
                        platform::errors::InvalidArgument(
                            "The dimensions of Input(Scale) must be 1, but "
                            "received dimensions of"
                            "Input(Scale) is [%d]",
                            ctx->GetInputDim("Scale").size()));
P
phlrain 已提交
65 66

      if (ctx->IsRuntime()) {
67
        PADDLE_ENFORCE_EQ(
68 69
            ctx->GetInputDim("Scale")[0],
            right,
70 71 72 73 74 75
            platform::errors::InvalidArgument(
                "The first dimension value of Input(Scale) must equal to be the"
                "second dimension value of the flattened 2D matrix of Input(X),"
                "But received the first dimension value of Input(Scale) is"
                "[%d], the second dimension value of the flattened 2D matrix of"
                " Input(Scale) is [%d].",
76 77
                ctx->GetInputDim("Scale")[0],
                right));
P
phlrain 已提交
78
      }
C
chengduoZH 已提交
79 80
    }
    if (ctx->HasInput("Bias")) {
81 82
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(),
                        1,
83 84 85 86 87
                        platform::errors::InvalidArgument(
                            "The dimensions of Input(Bias) must be 1, but "
                            "received dimensions of"
                            "Input(Bias) is [%d]",
                            ctx->GetInputDim("Bias").size()));
P
phlrain 已提交
88
      if (ctx->IsRuntime()) {
89
        PADDLE_ENFORCE_EQ(
90 91
            ctx->GetInputDim("Bias")[0],
            right,
92 93 94 95 96 97
            platform::errors::InvalidArgument(
                "The first dimension value of Input(Bias) must equal to be the"
                "second dimension value of the flattened 2D matrix of Input(X),"
                "But received the first dimension value of Input(Bias) is"
                "[%d], the second dimension value of the flattened 2D matrix of"
                " Input(Bias) is [%d].",
98 99
                ctx->GetInputDim("Scale")[0],
                right));
P
phlrain 已提交
100
      }
C
chengduoZH 已提交
101
    }
C
chengduoZH 已提交
102

C
chengduoZH 已提交
103
    ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
C
chengduoZH 已提交
104 105
    ctx->SetOutputDim("Mean", {left});
    ctx->SetOutputDim("Variance", {left});
C
chengduoZH 已提交
106 107
    ctx->ShareLoD("X", "Y");
  }
108 109 110

 protected:
  framework::OpKernelType GetExpectedKernelType(
F
furnace 已提交
111 112
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
113 114 115 116
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;

#ifdef PADDLE_WITH_MKLDNN
117
    int begin_norm_axis = ctx.Attr<int>("begin_norm_axis");
118
    if (library == framework::LibraryType::kPlain &&
119 120
        this->CanMKLDNNBeUsed(ctx, input_data_type) &&
        begin_norm_axis == ctx.Input<Tensor>("X")->dims().size() - 1) {
121 122 123 124 125
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
    }
#endif

126 127
    return framework::OpKernelType(
        input_data_type, ctx.GetPlace(), layout, library);
128
  }
C
chengduoZH 已提交
129 130 131 132
};

class LayerNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
133
  void Make() override {
Y
yuyang18 已提交
134
    AddInput("X", "The input tensor.");
C
chengduoZH 已提交
135
    AddInput("Scale",
Y
yuyang18 已提交
136
             "(optional) Scale is a 1-dimensional tensor of size "
C
chengduoZH 已提交
137 138 139
             "H(`begin_norm_axis` splits the tensor(`X`) to a matrix [N,H])."
             "It is applied to the output.")
        .AsDispensable();
C
chengduoZH 已提交
140
    AddInput("Bias",
Y
yuyang18 已提交
141
             "(optional) Bias is a 1-dimensional tensor of size "
C
chengduoZH 已提交
142 143 144
             "H(`begin_norm_axis` splits the tensor(`X`) to a matrix [N,H])."
             "It is applied to the output.")
        .AsDispensable();
Y
yuyang18 已提交
145 146 147
    AddOutput("Y", "Result after normalization.");
    AddOutput("Mean", "Mean of the current mini batch.").AsIntermediate();
    AddOutput("Variance", "Variance of the current mini batch.")
C
chengduoZH 已提交
148 149 150
        .AsIntermediate();

    AddAttr<float>("epsilon",
Y
yuyang18 已提交
151
                   "Constant for numerical stability [default 1e-5].")
C
chengduoZH 已提交
152 153
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &epsilon) {
154 155
          PADDLE_ENFORCE_EQ(epsilon >= 0.0f && epsilon <= 0.001f,
                            true,
156 157 158 159
                            platform::errors::InvalidArgument(
                                "'epsilon' in Op(LayerNorm) should be between"
                                "0.0 and 0.001, But received [%s].",
                                epsilon));
C
chengduoZH 已提交
160
        });
C
chengduoZH 已提交
161
    AddAttr<int>("begin_norm_axis",
Y
yuyang18 已提交
162
                 "the axis of `begin_norm_axis ... Rank(X) - 1` will be "
C
chengduoZH 已提交
163
                 "normalized. `begin_norm_axis` splits the tensor(`X`) to a "
Y
yuyang18 已提交
164
                 "matrix [N,H]. [default 1].")
C
chengduoZH 已提交
165 166
        .SetDefault(1)
        .AddCustomChecker([](const int &begin_norm_axis) {
167 168
          PADDLE_ENFORCE_GT(begin_norm_axis,
                            0,
169 170 171 172
                            platform::errors::InvalidArgument(
                                "'begin_norm_axis' in Op(LayerNorm) should be"
                                "greater than zero. But received [%d].",
                                begin_norm_axis));
C
chengduoZH 已提交
173
        });
174 175
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
176 177
        .SetDefault(false)
        .AsExtra();
178 179 180 181
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
182 183
        .InEnum({"float32", "bfloat16"})
        .AsExtra();
184 185 186
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
187 188
        .SetDefault(false)
        .AsExtra();
C
chengduoZH 已提交
189 190

    AddComment(R"DOC(
Y
yuyang18 已提交
191 192 193 194 195 196 197 198
Assume feature vectors exist on dimensions
:attr:`begin_norm_axis ... rank(input)` and calculate the moment statistics
along these dimensions for each feature vector :math:`a` with size
:math:`H`, then normalize each feature vector using the corresponding
statistics. After that, apply learnable gain and bias on the normalized
tensor to scale and shift if :attr:`scale` and :attr:`shift` are set.

Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
C
chengduoZH 已提交
199 200 201 202 203 204 205 206 207 208
)DOC");
  }
};

class LayerNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    // check input
209 210
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "LayerNormGrad");
    OP_INOUT_CHECK(ctx->HasInput("Mean"), "Input", "Mean", "LayerNormGrad");
211 212 213 214 215
    OP_INOUT_CHECK(
        ctx->HasInput("Variance"), "Input", "Variance", "LayerNormGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Y")),
                   "Input",
                   framework::GradVarName("Y"),
216
                   "LayerNormGrad");
C
chengduoZH 已提交
217 218 219

    // check output
    if (ctx->HasOutput(framework::GradVarName("X"))) {
C
chengduoZH 已提交
220
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
C
chengduoZH 已提交
221 222
    }
    if (ctx->HasOutput(framework::GradVarName("Scale"))) {
C
chengduoZH 已提交
223 224
      ctx->SetOutputDim(framework::GradVarName("Scale"),
                        ctx->GetInputDim("Scale"));
C
chengduoZH 已提交
225 226
    }
    if (ctx->HasOutput(framework::GradVarName("Bias"))) {
C
chengduoZH 已提交
227
      ctx->SetOutputDim(framework::GradVarName("Bias"),
228
                        ctx->GetInputDim("Bias"));
C
chengduoZH 已提交
229 230 231 232 233 234 235
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    const auto *var = ctx.InputVar(framework::GradVarName("Y"));
236 237 238
    PADDLE_ENFORCE_NOT_NULL(
        var,
        platform::errors::NotFound("Y@GRAD of LayerNorm Op is not found."));
C
chengduoZH 已提交
239 240 241 242 243 244
    const Tensor *t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
245 246
    PADDLE_ENFORCE_NOT_NULL(
        t, platform::errors::NotFound("Y@GRAD of LayerNorm Op is not found."));
F
furnace 已提交
247 248 249 250 251

    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;

    return framework::OpKernelType(
252 253 254 255
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.GetPlace(),
        layout,
        library);
C
chengduoZH 已提交
256 257 258
  }
};

H
hong 已提交
259 260
template <typename T>
class LayerNormGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
261
 public:
H
hong 已提交
262
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
263 264

 protected:
265
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
266
    op->SetType("layer_norm_grad");
H
hong 已提交
267 268 269 270 271 272
    op->SetInput("X", this->Input("X"));
    op->SetInput("Mean", this->Output("Mean"));
    op->SetInput("Variance", this->Output("Variance"));
    if (this->HasInput("Scale")) {
      op->SetInput("Scale", this->Input("Scale"));
      op->SetOutput(framework::GradVarName("Scale"), this->InputGrad("Scale"));
S
sneaxiy 已提交
273 274
    }

H
hong 已提交
275
    if (this->HasInput("Bias")) {
276
      op->SetInput("Bias", this->Input("Bias"));
H
hong 已提交
277
      op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
S
sneaxiy 已提交
278 279
    }

H
hong 已提交
280 281 282
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
283 284 285
  }
};

286
DECLARE_NO_NEED_BUFFER_VARS_INFERER(LayerNormGradNoNeedBufferVarInferer,
287 288
                                    "Bias");

C
chengduoZH 已提交
289 290 291 292
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
293 294 295
REGISTER_OPERATOR(layer_norm,
                  ops::LayerNormOp,
                  ops::LayerNormOpMaker,
H
hong 已提交
296 297
                  ops::LayerNormGradOpMaker<paddle::framework::OpDesc>,
                  ops::LayerNormGradOpMaker<paddle::imperative::OpBase>);
298 299
REGISTER_OPERATOR(layer_norm_grad,
                  ops::LayerNormGradOp,
300
                  ops::LayerNormGradNoNeedBufferVarInferer);