fused_attention_op.cc 30.1 KB
Newer Older
L
Li Min 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>
17

L
Li Min 已提交
18
#include "paddle/fluid/framework/op_registry.h"
19
#include "paddle/fluid/framework/op_version_registry.h"
L
Li Min 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class FusedAttentionOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasInput("QKVW"), "Input", "QKVW", "FusedAttentionOp");
33 34
    OP_INOUT_CHECK(
        ctx->HasInput("OutLinearW"), "Input", "OutLinearW", "FusedAttentionOp");
L
Li Min 已提交
35

36
    if (ctx->Attrs().Get<bool>("pre_layer_norm") == true) {
37 38 39 40 41
      OP_INOUT_CHECK(
          ctx->HasOutput("LnMean"), "Output", "LnMean", "FusedAttentionOp");
      OP_INOUT_CHECK(ctx->HasOutput("LnVariance"),
                     "Output",
                     "LnVariance",
42
                     "FusedAttentionOp");
43 44
      OP_INOUT_CHECK(
          ctx->HasOutput("LnOut"), "Output", "LnOut", "FusedAttentionOp");
L
Li Min 已提交
45
    } else {
46 47 48 49 50
      OP_INOUT_CHECK(
          ctx->HasOutput("Ln2Mean"), "Output", "Ln2Mean", "FusedAttentionOp");
      OP_INOUT_CHECK(ctx->HasOutput("Ln2Variance"),
                     "Output",
                     "Ln2Variance",
L
Li Min 已提交
51
                     "FusedAttentionOp");
52 53 54
      OP_INOUT_CHECK(ctx->HasOutput("BiasDropoutResidualOut"),
                     "Output",
                     "BiasDropoutResidualOut",
L
Li Min 已提交
55
                     "FusedAttentionOp");
56 57
    }

L
Li Min 已提交
58
    // qkv_out: [batch_size, seq_len, 3, num_head, dim_head]
59 60
    OP_INOUT_CHECK(
        ctx->HasOutput("QKVOut"), "Output", "QKVOut", "FusedAttentionOp");
61
    if (ctx->HasInput("QKVBias")) {
62 63 64
      OP_INOUT_CHECK(ctx->HasOutput("QKVBiasOut"),
                     "Output",
                     "QKVBiasOut",
65 66
                     "FusedAttentionOp");
    }
67 68 69
    OP_INOUT_CHECK(ctx->HasOutput("TransposeOut2"),
                   "Output",
                   "TransposeOut2",
L
Li Min 已提交
70
                   "FusedAttentionOp");
71 72 73 74
    OP_INOUT_CHECK(
        ctx->HasOutput("QKOut"), "Output", "QKOut", "FusedAttentionOp");
    OP_INOUT_CHECK(
        ctx->HasOutput("QKTVOut"), "Output", "QKTVOut", "FusedAttentionOp");
75

76
    if (ctx->HasInput("CacheKV")) {
77 78 79
      OP_INOUT_CHECK(ctx->HasOutput("CacheKVOut"),
                     "Output",
                     "CacheKVOut",
80 81
                     "FusedAttentionOp");
    }
82
    if (ctx->HasInput("SrcMask")) {
83 84 85
      OP_INOUT_CHECK(ctx->HasOutput("SrcMaskOut"),
                     "Output",
                     "SrcMaskOut",
86 87
                     "FusedAttentionOp");
    }
88 89 90
    OP_INOUT_CHECK(ctx->HasOutput("SoftmaxOut"),
                   "Output",
                   "SoftmaxOut",
L
Li Min 已提交
91
                   "FusedAttentionOp");
92 93 94
    OP_INOUT_CHECK(ctx->HasOutput("AttnDropoutMaskOut"),
                   "Output",
                   "AttnDropoutMaskOut",
L
Li Min 已提交
95
                   "FusedAttentionOp");
96 97 98
    OP_INOUT_CHECK(ctx->HasOutput("AttnDropoutOut"),
                   "Output",
                   "AttnDropoutOut",
L
Li Min 已提交
99
                   "FusedAttentionOp");
100 101 102 103 104
    OP_INOUT_CHECK(
        ctx->HasOutput("FMHAOut"), "Output", "FMHAOut", "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("OutLinearOut"),
                   "Output",
                   "OutLinearOut",
L
Li Min 已提交
105
                   "FusedAttentionOp");
L
Li Min 已提交
106

107 108 109
    OP_INOUT_CHECK(ctx->HasOutput("DropoutMaskOut"),
                   "Output",
                   "DropoutMaskOut",
L
Li Min 已提交
110 111 112 113 114 115 116
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "FusedAttentionOp");

    // x: qkv's input [batch_size, seq_len, dim_embed]
    // y: qkv's weight: [3, num_head, dim_head, dim_embed]
    auto x_dim = ctx->GetInputDim("X");
    auto y_dim = ctx->GetInputDim("QKVW");
117
    PADDLE_ENFORCE_EQ(
118 119
        x_dim.size(),
        3,
120 121 122 123 124
        platform::errors::InvalidArgument("The dimensions of x must be 3"
                                          "(batch_size, seq_len, dim_embed),"
                                          "but received dimensions of"
                                          "Input is [%d]",
                                          x_dim.size()));
125 126
    PADDLE_ENFORCE_EQ(y_dim.size(),
                      4,
L
Li Min 已提交
127 128 129 130 131 132
                      platform::errors::InvalidArgument(
                          "The dimensions of qkv_weight must be 4"
                          "(3, num_head, dim_head, dim_embed),"
                          "but received dimensions of"
                          "Input is [%d]",
                          y_dim.size()));
133 134
    PADDLE_ENFORCE_EQ(x_dim[2],
                      y_dim[3],
L
Li Min 已提交
135 136 137 138 139
                      platform::errors::InvalidArgument(
                          "ShapeError: the dimension of x_dim[2] and y_dim[3]"
                          "must be equal. But received: the shape "
                          "of input x = [%s], and the shape of "
                          "input qkv_weight = [%s]",
140 141
                          x_dim,
                          y_dim));
L
Li Min 已提交
142

143
    if (ctx->Attrs().Get<int>("ring_id") == -1) {
144 145
      PADDLE_ENFORCE_EQ(y_dim[1] * y_dim[2],
                        y_dim[3],
146 147 148 149 150 151
                        platform::errors::InvalidArgument(
                            "The dimensions of qkv_weight must be 4"
                            "(3, num_head, dim_head, dim_embed),"
                            "and must satisfy the limitations: "
                            "(num_head * dim_head == dim_embed)"));
    }
152

153 154 155 156
    if (ctx->Attrs().Get<bool>("pre_layer_norm") == true) {
      ctx->SetOutputDim("LnMean", {x_dim[0] * x_dim[1]});
      ctx->SetOutputDim("LnVariance", {x_dim[0] * x_dim[1]});
      ctx->SetOutputDim("LnOut", ctx->GetInputDim("X"));
L
Li Min 已提交
157 158 159 160
    } else {
      ctx->SetOutputDim("Ln2Mean", {x_dim[0] * x_dim[1]});
      ctx->SetOutputDim("Ln2Variance", {x_dim[0] * x_dim[1]});
      ctx->SetOutputDim("BiasDropoutResidualOut", ctx->GetInputDim("X"));
161
    }
L
Li Min 已提交
162 163 164
    // [batch_size, seq_len, 3, num_head, head_size]
    ctx->SetOutputDim("QKVOut",
                      {x_dim[0], x_dim[1], y_dim[0], y_dim[1], y_dim[2]});
165 166 167 168 169

    if (ctx->HasInput("QKVBias")) {
      ctx->SetOutputDim("QKVBiasOut",
                        {x_dim[0], x_dim[1], y_dim[0], y_dim[1], y_dim[2]});
    }
L
Li Min 已提交
170 171 172
    // [3, batch_size, num_head, seq_len, head_size]
    ctx->SetOutputDim("TransposeOut2",
                      {y_dim[0], x_dim[0], y_dim[1], x_dim[1], y_dim[2]});
173 174 175 176 177 178 179 180

    // cache_seq_len + seq_len if cache else seq_len
    auto out_seq_len = x_dim[1];
    if (ctx->HasInput("CacheKV")) {
      // [2, batch_size, num_head, cache_seq_len, head_size]
      auto c_dim = ctx->GetInputDim("CacheKV");

      PADDLE_ENFORCE_EQ(
181 182
          c_dim.size(),
          5,
183 184
          paddle::platform::errors::InvalidArgument(
              "The CacheKV must be 5 dims, but got %d", c_dim.size()));
185 186
      PADDLE_ENFORCE_EQ(c_dim[0],
                        2,
187 188 189
                        paddle::platform::errors::InvalidArgument(
                            "The first dim of CacheKV must be 2, but got %d",
                            c_dim[0]));  // 2
190 191
      PADDLE_ENFORCE_EQ(c_dim[1],
                        x_dim[0],
192 193 194
                        paddle::platform::errors::InvalidArgument(
                            "The second dim of CacheKV must be equal with "
                            "batch size %d, but got %d",
195 196 197 198
                            x_dim[0],
                            c_dim[1]));  // batch_size
      PADDLE_ENFORCE_EQ(c_dim[2],
                        y_dim[1],
199 200 201
                        paddle::platform::errors::InvalidArgument(
                            "The third dim of CacheKV must be equal with num "
                            "head %d, but got %d",
202 203
                            y_dim[1],
                            c_dim[2]));  // num_head
204 205 206 207
      // In compile stage, input seq_len can be -1, in that case
      // c_dim[3] may < 0 in while
      if (ctx->IsRuntime()) {
        PADDLE_ENFORCE_GE(
208 209
            c_dim[3],
            0,
210 211 212 213
            paddle::platform::errors::InvalidArgument(
                "The forth dim of CacheKV must be greater than 0, but got %d",
                c_dim[3]));  // cache_seq_len
      }
214 215
      PADDLE_ENFORCE_EQ(c_dim[4],
                        y_dim[2],
216 217 218
                        paddle::platform::errors::InvalidArgument(
                            "The fifth dim of CacheKV must be equal with head "
                            "size %d, but got %d",
219 220
                            y_dim[2],
                            c_dim[4]));  // head_size
221 222 223 224 225 226 227 228 229

      out_seq_len += c_dim[3];
      // [3, batch_size, num_head, cache_seq_len + seq_len, head_size]
      ctx->SetOutputDim("CacheKVOut",
                        {c_dim[0], c_dim[1], c_dim[2], out_seq_len, c_dim[4]});
    }

    // [batch, num_head, seq_len, out_seq_len]
    ctx->SetOutputDim("QKOut", {x_dim[0], y_dim[1], x_dim[1], out_seq_len});
230 231

    if (ctx->HasInput("SrcMask")) {
232 233
      ctx->SetOutputDim("SrcMaskOut",
                        {x_dim[0], y_dim[1], x_dim[1], out_seq_len});
234
    }
L
Li Min 已提交
235 236
    // the same as QKOut's shape.
    ctx->SetOutputDim("AttnDropoutOut",
237
                      {x_dim[0], y_dim[1], x_dim[1], out_seq_len});
L
Li Min 已提交
238
    if (ctx->Attrs().Get<bool>("is_test") == false) {
L
Li Min 已提交
239
      ctx->SetOutputDim("AttnDropoutMaskOut",
240
                        {x_dim[0], y_dim[1], x_dim[1], out_seq_len});
L
Li Min 已提交
241
    }
242 243
    ctx->SetOutputDim("SoftmaxOut",
                      {x_dim[0], y_dim[1], x_dim[1], out_seq_len});
L
Li Min 已提交
244 245 246 247 248 249
    // [batch_size, num_heads, seq_len, head_dim]
    ctx->SetOutputDim("QKTVOut", {x_dim[0], y_dim[1], x_dim[1], y_dim[2]});
    // [batch_size, seq_len, number of heads*head size]
    ctx->SetOutputDim("FMHAOut", {x_dim[0], x_dim[1], y_dim[1], y_dim[2]});
    ctx->SetOutputDim("OutLinearOut", ctx->GetInputDim("X"));

L
Li Min 已提交
250
    if (ctx->Attrs().Get<bool>("is_test") == false) {
L
Li Min 已提交
251 252
      ctx->SetOutputDim("DropoutMaskOut", ctx->GetInputDim("X"));
    }
L
Li Min 已提交
253

L
Li Min 已提交
254 255 256 257 258 259 260
    ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input = ctx.Input<Tensor>("X");
261
    auto input_data_type = framework::TransToProtoVarType(input->dtype());
L
Li Min 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

class FusedAttentionOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "The input tensor.");
    AddInput("LnScale",
             "(optional) Scale is a 1-dimensional tensor of size "
             "H. Here, H represents the last dimension of its input tensor.")
        .AsDispensable();
    AddInput("LnBias",
             "(optional) Bias is a 1-dimensional tensor of size "
             "H. Here, H represents the last dimension of its input tensor.")
        .AsDispensable();
    AddInput("QKVW", "The qkv weight tensor.");
279
    AddInput("QKVBias", "The qkv bias tensor.").AsDispensable();
280 281
    AddInput("CacheKV", "(optional) The cached KV for generation inference.")
        .AsDispensable();
L
Li Min 已提交
282 283 284
    AddInput("SrcMask", "(optional) The attention mask tensor in fmha.")
        .AsDispensable();
    AddInput("OutLinearW", "The out_linear weight tensor.");
285
    AddInput("OutLinearBias", "The out_linear bias tensor.").AsDispensable();
L
Li Min 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    AddInput("Ln2Scale",
             "(optional) Scale is a 1-dimensional tensor of size "
             "H. Here, H represents the last dimension of its input tensor.")
        .AsDispensable();
    AddInput("Ln2Bias",
             "(optional) Bias is a 1-dimensional tensor of size "
             "H. Here, H represents the last dimension of its input tensor.")
        .AsDispensable();
    AddOutput("LnMean", "Mean of the current mini batch.").AsIntermediate();
    AddOutput("LnVariance", "Variance of the current mini batch.")
        .AsIntermediate();
    AddOutput("LnOut", "The output of pre layer_norm.").AsIntermediate();
    AddOutput("QKVOut", "Result after qkv.").AsIntermediate();
    AddOutput("QKVBiasOut", "Result after qkv and bias op.").AsIntermediate();
    AddOutput("TransposeOut2", "Result in fmha.").AsIntermediate();
    AddOutput("QKOut", "Result in fmha.").AsIntermediate();
    AddOutput("QKTVOut", "Result in fmha.").AsIntermediate();
    AddOutput("SoftmaxOut", "Result in fmha.").AsIntermediate();
    AddOutput("AttnDropoutMaskOut", "Result in fmha.").AsIntermediate();
    AddOutput("AttnDropoutOut", "Result in fmha.").AsIntermediate();
    AddOutput("SrcMaskOut", "Result in fmha.").AsIntermediate();
    AddOutput("FMHAOut", "Result after fmha.").AsIntermediate();
    AddOutput("OutLinearOut", "Result after out_linear.").AsIntermediate();
    AddOutput("DropoutMaskOut", "The random sampled dropout mask.")
        .AsIntermediate();
    AddOutput("Ln2Mean", "Mean of the current mini batch.").AsIntermediate();
    AddOutput("Ln2Variance", "Variance of the current mini batch.")
        .AsIntermediate();
    AddOutput("BiasDropoutResidualOut",
              "Result of residual + dropout(src + bias).")
        .AsIntermediate();
317
    AddOutput("CacheKVOut", "The udpated cache KV.");
L
Li Min 已提交
318 319 320 321 322 323 324 325 326 327 328
    AddOutput("Y", "Result after attention.");

    AddAttr<bool>("pre_layer_norm",
                  "if true, the attention op uses pre_layer_norm architecure, "
                  "else, uses post_layer_norm architecuture. "
                  "[default false].")
        .SetDefault(false);
    AddAttr<float>("epsilon",
                   "Constant for numerical stability [default 1e-5].")
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &epsilon) {
329 330
          PADDLE_ENFORCE_EQ(epsilon >= 0.0f && epsilon <= 0.001f,
                            true,
L
Li Min 已提交
331 332 333 334 335 336 337 338 339 340 341
                            platform::errors::InvalidArgument(
                                "'epsilon' in Op(LayerNorm) should be between"
                                "0.0 and 0.001, But received [%s].",
                                epsilon));
        });

    // for dropout in fmha.
    AddAttr<float>("attn_dropout_rate", "Probability of setting units to zero.")
        .SetDefault(.5f)
        .AddCustomChecker([](const float &drop_p) {
          PADDLE_ENFORCE_EQ(
342 343
              drop_p >= 0.0f && drop_p <= 1.0f,
              true,
L
Li Min 已提交
344 345 346
              platform::errors::InvalidArgument(
                  "'attn_dropout_rate' must be between 0.0 and 1.0."));
        });
L
Li Min 已提交
347
    AddAttr<bool>("is_test",
L
Li Min 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
    AddAttr<bool>("attn_dropout_fix_seed",
                  "A flag indicating whether to use a fixed seed to generate "
                  "random mask. NOTE: DO NOT set this flag to true in "
                  "training. Setting this flag to true is only useful in "
                  "unittest or for debug that always the same output units "
                  "will be dropped.")
        .SetDefault(true);
    AddAttr<int>("attn_dropout_seed", "Dropout random seed.").SetDefault(0);
    AddAttr<std::string>(
        "attn_dropout_implementation",
        "[\"downgrade_in_infer\"|\"upscale_in_train\"]"
        "There are two kinds of ways to implement dropout"
        "(the mask below is a tensor have the same shape with input"
        "the value of mask is 0 or 1, the ratio of 0 is dropout_rate)"
        "1. downgrade_in_infer(default), downgrade the outcome at inference "
        "time"
        "   train: out = input * mask"
        "   inference: out = input * (1.0 - dropout_rate)"
        "2. upscale_in_train, upscale the outcome at training time, do nothing "
        "in inference"
        "   train: out = input * mask / ( 1.0 - dropout_rate )"
        "   inference: out = input"
        "   dropout op can be removed from the program. the program will be "
        "efficient")
        .SetDefault("upscale_in_train")
        .AddCustomChecker([](const std::string &type) {
          PADDLE_ENFORCE_EQ(
378 379
              type == "downgrade_in_infer" || type == "upscale_in_train",
              true,
L
Li Min 已提交
380 381 382 383 384 385 386 387
              platform::errors::InvalidArgument(
                  "dropout_implementation can only be downgrade_in_infer or "
                  "upscale_in_train"));
        });

    AddAttr<float>("dropout_rate", "Probability of setting units to zero.")
        .SetDefault(.5f)
        .AddCustomChecker([](const float &drop_p) {
388 389
          PADDLE_ENFORCE_EQ(drop_p >= 0.0f && drop_p <= 1.0f,
                            true,
L
Li Min 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
                            platform::errors::InvalidArgument(
                                "'dropout_rate' must be between 0.0 and 1.0."));
        });
    AddAttr<bool>("dropout_fix_seed",
                  "A flag indicating whether to use a fixed seed to generate "
                  "random mask. NOTE: DO NOT set this flag to true in "
                  "training. Setting this flag to true is only useful in "
                  "unittest or for debug that always the same output units "
                  "will be dropped.")
        .SetDefault(true);
    AddAttr<int>("dropout_seed", "Dropout random seed.").SetDefault(0);
    AddAttr<std::string>(
        "dropout_implementation",
        "[\"downgrade_in_infer\"|\"upscale_in_train\"]"
        "The meaning is the same as 'attn_dropout_implementation'.")
        .SetDefault("downgrade_in_infer")
        .AddCustomChecker([](const std::string &type) {
          PADDLE_ENFORCE_EQ(
408 409
              type == "downgrade_in_infer" || type == "upscale_in_train",
              true,
L
Li Min 已提交
410 411 412 413 414 415 416 417
              platform::errors::InvalidArgument(
                  "dropout_implementation can only be downgrade_in_infer or "
                  "upscale_in_train"));
        });
    AddAttr<float>("ln_epsilon",
                   "Constant for numerical stability [default 1e-5].")
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &ln_epsilon) {
418 419
          PADDLE_ENFORCE_EQ(ln_epsilon >= 0.0f && ln_epsilon <= 0.001f,
                            true,
L
Li Min 已提交
420 421 422 423 424 425
                            platform::errors::InvalidArgument(
                                "'epsilon' of the second LayerNorm in Fused "
                                "attention op should be between"
                                "0.0 and 0.001, But received [%s].",
                                ln_epsilon));
        });
426
    AddAttr<bool>("add_residual", "Whether to add residual.").SetDefault(true);
427 428 429 430
    AddAttr<int>(
        "ring_id",
        "ring id for tensor model parallel. distributed training and inference")
        .SetDefault(-1);
L
Li Min 已提交
431 432

    AddComment(R"DOC(
433 434 435
  The fused_attention operator is the same as following pseudo codes:

  // @input: [batch_size, seq_len, embed_dim] 
L
Li Min 已提交
436
  // @final_out: [batch_size, seq_len, num_heads, head_dim] 
437
  residual = input
L
Li Min 已提交
438
  if (pre_layernorm)
439 440 441
    query = layer_norm(input);
  out = compute_qkv(query) + qkv_bias;
  // fmha module
L
Li Min 已提交
442 443 444 445 446 447 448 449
  {
    out = transpose(out, perm=[2, 0, 3, 1, 4]);
    out = q * k^t;
    out = attn_mask + out;
    out = softmax(out);
    out = dropout(out);
    out = out * v;
    out = transpose(out, perm=[0, 2, 1, 3]);
L
Li Min 已提交
450
                
L
Li Min 已提交
451
  }
452 453 454 455 456 457 458 459
  // out linear
  out = linear(out);
  if add_residual:
    out = residual + dropout(out);
  else:
    out = dropout(out);
  if (!pre_layernorm)
    out = layer_norm(out);
L
Li Min 已提交
460 461 462 463
    )DOC");
  }
};

464 465 466 467 468
class FusedAttentionGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
469 470
    PADDLE_ENFORCE_EQ(ctx->Attrs().Get<bool>("is_test"),
                      false,
L
Li Min 已提交
471 472
                      platform::errors::InvalidArgument(
                          "GradOp is only callable when is_test is false"));
473

L
Li Min 已提交
474
    if (ctx->Attrs().Get<bool>("pre_layer_norm") == false) {
475 476 477 478 479
      OP_INOUT_CHECK(
          ctx->HasInput("Ln2Mean"), "Input", "Ln2Mean", "FusedAttentionGrad");
      OP_INOUT_CHECK(ctx->HasInput("Ln2Variance"),
                     "Input",
                     "Ln2Variance",
L
Li Min 已提交
480 481 482 483 484 485 486 487 488 489
                     "FusedAttentionGrad");
      if (ctx->HasOutput(framework::GradVarName("Ln2Scale"))) {
        ctx->SetOutputDim(framework::GradVarName("Ln2Scale"),
                          ctx->GetInputDim("Ln2Scale"));
      }
      if (ctx->HasOutput(framework::GradVarName("Ln2Bias"))) {
        ctx->SetOutputDim(framework::GradVarName("Ln2Bias"),
                          ctx->GetInputDim("Ln2Bias"));
      }
    } else {
490 491 492 493 494
      OP_INOUT_CHECK(
          ctx->HasInput("LnMean"), "Input", "LnMean", "FusedAttentionGrad");
      OP_INOUT_CHECK(ctx->HasInput("LnVariance"),
                     "Input",
                     "LnVariance",
495
                     "FusedAttentionGrad");
496 497
      OP_INOUT_CHECK(
          ctx->HasInput("LnOut"), "Input", "LnOut", "FusedAttentionGrad");
498
    }
L
Li Min 已提交
499 500

    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FusedAttentionGrad");
501 502 503 504 505
    OP_INOUT_CHECK(
        ctx->HasInput("QKVW"), "Input", "QKVW", "FusedAttentionGrad");
    OP_INOUT_CHECK(ctx->HasInput("OutLinearW"),
                   "Input",
                   "OutLinearW",
506 507
                   "FusedAttentionGrad");

508 509 510 511 512 513 514 515 516
    if (ctx->Attrs().Get<bool>("pre_layer_norm") == true) {
      if (ctx->HasOutput(framework::GradVarName("LnScale"))) {
        ctx->SetOutputDim(framework::GradVarName("LnScale"),
                          ctx->GetInputDim("LnScale"));
      }
      if (ctx->HasOutput(framework::GradVarName("LnBias"))) {
        ctx->SetOutputDim(framework::GradVarName("LnBias"),
                          ctx->GetInputDim("LnBias"));
      }
517 518 519 520
    }
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
    }
521 522 523 524
    if (ctx->HasOutput(framework::GradVarName("OutLinearBias"))) {
      ctx->SetOutputDim(framework::GradVarName("OutLinearBias"),
                        ctx->GetInputDim("OutLinearBias"));
    }
525 526 527
    ctx->SetOutputDim(framework::GradVarName("OutLinearW"),
                      ctx->GetInputDim("OutLinearW"));
    ctx->SetOutputDim(framework::GradVarName("QKVW"), ctx->GetInputDim("QKVW"));
528 529 530 531
    if (ctx->HasOutput(framework::GradVarName("QKVBias"))) {
      ctx->SetOutputDim(framework::GradVarName("QKVBias"),
                        ctx->GetInputDim("QKVBias"));
    }
532

533 534 535
    if (ctx->Attrs().Get<bool>("pre_layer_norm") == true) {
      ctx->SetOutputDim(framework::GradVarName("LnOut"),
                        ctx->GetInputDim("LnOut"));
L
Li Min 已提交
536 537 538
    } else {
      ctx->SetOutputDim(framework::GradVarName("BiasDropoutResidualOut"),
                        ctx->GetInputDim("BiasDropoutResidualOut"));
539
    }
540 541 542 543 544 545 546 547 548 549 550 551
    ctx->SetOutputDim(framework::GradVarName("FMHAOut"),
                      ctx->GetInputDim("FMHAOut"));
    ctx->SetOutputDim(framework::GradVarName("QKTVOut"),
                      ctx->GetInputDim("QKTVOut"));
    ctx->SetOutputDim(framework::GradVarName("TransposeOut2"),
                      ctx->GetInputDim("TransposeOut2"));
    ctx->SetOutputDim(framework::GradVarName("QKOut"),
                      ctx->GetInputDim("QKOut"));
    ctx->SetOutputDim(framework::GradVarName("SoftmaxOut"),
                      ctx->GetInputDim("SoftmaxOut"));
    ctx->SetOutputDim(framework::GradVarName("AttnDropoutOut"),
                      ctx->GetInputDim("AttnDropoutOut"));
552 553 554 555 556

    if (ctx->HasOutput(framework::GradVarName("SrcMaskOut"))) {
      ctx->SetOutputDim(framework::GradVarName("SrcMaskOut"),
                        ctx->GetInputDim("SrcMaskOut"));
    }
557 558
    ctx->SetOutputDim(framework::GradVarName("QKVOut"),
                      ctx->GetInputDim("QKVOut"));
559 560 561 562
    if (ctx->HasOutput(framework::GradVarName("QKVBiasOut"))) {
      ctx->SetOutputDim(framework::GradVarName("QKVBiasOut"),
                        ctx->GetInputDim("QKVBiasOut"));
    }
563 564 565 566 567 568 569 570
    ctx->SetOutputDim(framework::GradVarName("OutLinearOut"),
                      ctx->GetInputDim("OutLinearOut"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input = ctx.Input<Tensor>("X");
571
    auto input_data_type = framework::TransToProtoVarType(input->dtype());
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

template <typename T>
class FusedAttentionGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("fused_attention_grad");
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));

    // inputs x, parameters and their grad.
    op->SetInput("X", this->Input("X"));
    op->SetInput("QKVW", this->Input("QKVW"));
589 590 591 592 593 594 595 596 597

    if (this->HasInput("QKVBias")) {
      op->SetInput("QKVBias", this->Input("QKVBias"));
      op->SetOutput(framework::GradVarName("QKVBias"),
                    this->InputGrad("QKVBias"));
      op->SetInput("QKVBiasOut", this->Output("QKVBiasOut"));
      op->SetOutput(framework::GradVarName("QKVBiasOut"),
                    this->OutputGrad("QKVBiasOut"));
    }
598 599 600 601 602 603 604 605

    if (this->HasInput("SrcMask")) {
      op->SetInput("SrcMask", this->Input("SrcMask"));
      op->SetInput("SrcMaskOut", this->Output("SrcMaskOut"));
      op->SetOutput(framework::GradVarName("SrcMaskOut"),
                    this->OutputGrad("SrcMaskOut"));
    }

606
    op->SetInput("OutLinearW", this->Input("OutLinearW"));
607 608 609 610 611
    if (this->HasInput("OutLinearBias")) {
      op->SetInput("OutLinearBias", this->Input("OutLinearBias"));
      op->SetOutput(framework::GradVarName("OutLinearBias"),
                    this->InputGrad("OutLinearBias"));
    }
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626

    op->SetAttrMap(this->Attrs());
    bool is_pre_layer_norm =
        BOOST_GET_CONST(bool, op->GetAttr("pre_layer_norm"));
    if (is_pre_layer_norm) {
      if (this->HasInput("LnScale")) {
        op->SetInput("LnScale", this->Input("LnScale"));
        op->SetOutput(framework::GradVarName("LnScale"),
                      this->InputGrad("LnScale"));
      }
      if (this->HasInput("LnBias")) {
        op->SetInput("LnBias", this->Input("LnBias"));
        op->SetOutput(framework::GradVarName("LnBias"),
                      this->InputGrad("LnBias"));
      }
L
Li Min 已提交
627 628 629 630 631 632 633 634 635 636 637
    } else {
      if (this->HasInput("Ln2Scale")) {
        op->SetInput("Ln2Scale", this->Input("Ln2Scale"));
        op->SetOutput(framework::GradVarName("Ln2Scale"),
                      this->InputGrad("Ln2Scale"));
      }
      if (this->HasInput("Ln2Bias")) {
        op->SetInput("Ln2Bias", this->Input("Ln2Bias"));
        op->SetOutput(framework::GradVarName("Ln2Bias"),
                      this->InputGrad("Ln2Bias"));
      }
638 639 640 641
    }

    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("QKVW"), this->InputGrad("QKVW"));
642

643 644 645 646
    op->SetOutput(framework::GradVarName("OutLinearW"),
                  this->InputGrad("OutLinearW"));

    // use forward outputs as backward inputs.
647 648 649 650 651 652 653 654 655 656
    if (is_pre_layer_norm) {
      if (this->HasOutput("LnOut")) {
        op->SetInput("LnOut", this->Output("LnOut"));
      }
      if (this->HasOutput("LnMean")) {
        op->SetInput("LnMean", this->Output("LnMean"));
      }
      if (this->HasOutput("LnVariance")) {
        op->SetInput("LnVariance", this->Output("LnVariance"));
      }
L
Li Min 已提交
657 658 659 660 661
    } else {
      op->SetInput("Ln2Mean", this->Output("Ln2Mean"));
      op->SetInput("Ln2Variance", this->Output("Ln2Variance"));
      op->SetInput("BiasDropoutResidualOut",
                   this->Output("BiasDropoutResidualOut"));
662
    }
663
    op->SetInput("QKVOut", this->Output("QKVOut"));
664

665 666 667 668 669 670
    op->SetInput("TransposeOut2", this->Output("TransposeOut2"));
    op->SetInput("QKOut", this->Output("QKOut"));
    op->SetInput("QKTVOut", this->Output("QKTVOut"));
    op->SetInput("SoftmaxOut", this->Output("SoftmaxOut"));
    op->SetInput("AttnDropoutMaskOut", this->Output("AttnDropoutMaskOut"));
    op->SetInput("AttnDropoutOut", this->Output("AttnDropoutOut"));
671

672 673 674 675 676 677
    op->SetInput("FMHAOut", this->Output("FMHAOut"));
    op->SetInput("OutLinearOut", this->Output("OutLinearOut"));
    op->SetInput("DropoutMaskOut", this->Output("DropoutMaskOut"));
    op->SetInput("QKVOut", this->Output("QKVOut"));

    // backward outputs: dinput
678 679 680 681 682
    if (is_pre_layer_norm) {
      if (this->HasOutput("LnOut")) {
        op->SetOutput(framework::GradVarName("LnOut"),
                      this->OutputGrad("LnOut"));
      }
L
Li Min 已提交
683 684 685
    } else {
      op->SetOutput(framework::GradVarName("BiasDropoutResidualOut"),
                    this->OutputGrad("BiasDropoutResidualOut"));
686
    }
L
Li Min 已提交
687

688
    op->SetOutput(framework::GradVarName("QKVOut"), this->OutputGrad("QKVOut"));
689

690 691 692 693 694 695 696 697 698
    op->SetOutput(framework::GradVarName("QKTVOut"),
                  this->OutputGrad("QKTVOut"));
    op->SetOutput(framework::GradVarName("TransposeOut2"),
                  this->OutputGrad("TransposeOut2"));
    op->SetOutput(framework::GradVarName("QKOut"), this->OutputGrad("QKOut"));
    op->SetOutput(framework::GradVarName("SoftmaxOut"),
                  this->OutputGrad("SoftmaxOut"));
    op->SetOutput(framework::GradVarName("AttnDropoutOut"),
                  this->OutputGrad("AttnDropoutOut"));
699

700 701 702 703 704 705 706
    op->SetOutput(framework::GradVarName("FMHAOut"),
                  this->OutputGrad("FMHAOut"));
    op->SetOutput(framework::GradVarName("OutLinearOut"),
                  this->OutputGrad("OutLinearOut"));
  }
};

L
Li Min 已提交
707 708 709 710
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
711 712
REGISTER_OPERATOR(fused_attention,
                  ops::FusedAttentionOp,
713 714 715 716
                  ops::FusedAttentionOpMaker,
                  ops::FusedAttentionGradOpMaker<paddle::framework::OpDesc>,
                  ops::FusedAttentionGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(fused_attention_grad, ops::FusedAttentionGradOp);
717 718 719 720 721 722

REGISTER_OP_VERSION(fused_attention)
    .AddCheckpoint(
        R"ROC(
              Add a new attribute [add_residual] )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
723 724
            "add_residual",
            "A flag to indicate whether to add residual.",
725
            true));