fused_attention_op.cc 25.9 KB
Newer Older
L
Li Min 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class FusedAttentionOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasInput("QKVW"), "Input", "QKVW", "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasInput("QKVBias"), "Input", "QKVBias",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasInput("OutLinearW"), "Input", "OutLinearW",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasInput("OutLinearBias"), "Input", "OutLinearBias",
                   "FusedAttentionOp");

38 39 40 41 42 43 44
    if (ctx->Attrs().Get<bool>("pre_layer_norm") == true) {
      OP_INOUT_CHECK(ctx->HasOutput("LnMean"), "Output", "LnMean",
                     "FusedAttentionOp");
      OP_INOUT_CHECK(ctx->HasOutput("LnVariance"), "Output", "LnVariance",
                     "FusedAttentionOp");
      OP_INOUT_CHECK(ctx->HasOutput("LnOut"), "Output", "LnOut",
                     "FusedAttentionOp");
L
Li Min 已提交
45 46 47 48 49 50 51
    } else {
      OP_INOUT_CHECK(ctx->HasOutput("Ln2Mean"), "Output", "Ln2Mean",
                     "FusedAttentionOp");
      OP_INOUT_CHECK(ctx->HasOutput("Ln2Variance"), "Output", "Ln2Variance",
                     "FusedAttentionOp");
      OP_INOUT_CHECK(ctx->HasOutput("BiasDropoutResidualOut"), "Output",
                     "BiasDropoutResidualOut", "FusedAttentionOp");
52 53
    }

L
Li Min 已提交
54 55 56 57 58 59 60 61 62 63 64
    // qkv_out: [batch_size, seq_len, 3, num_head, dim_head]
    OP_INOUT_CHECK(ctx->HasOutput("QKVOut"), "Output", "QKVOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("QKVBiasOut"), "Output", "QKVBiasOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("TransposeOut2"), "Output", "TransposeOut2",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("QKOut"), "Output", "QKOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("QKTVOut"), "Output", "QKTVOut",
                   "FusedAttentionOp");
65 66 67 68 69

    if (ctx->HasInput("SrcMask")) {
      OP_INOUT_CHECK(ctx->HasOutput("SrcMaskOut"), "Output", "SrcMaskOut",
                     "FusedAttentionOp");
    }
L
Li Min 已提交
70 71 72 73 74 75 76 77 78 79
    OP_INOUT_CHECK(ctx->HasOutput("SoftmaxOut"), "Output", "SoftmaxOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("AttnDropoutMaskOut"), "Output",
                   "AttnDropoutMaskOut", "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("AttnDropoutOut"), "Output", "AttnDropoutOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("FMHAOut"), "Output", "FMHAOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("OutLinearOut"), "Output", "OutLinearOut",
                   "FusedAttentionOp");
L
Li Min 已提交
80

L
Li Min 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    OP_INOUT_CHECK(ctx->HasOutput("DropoutMaskOut"), "Output", "DropoutMaskOut",
                   "FusedAttentionOp");
    OP_INOUT_CHECK(ctx->HasOutput("Y"), "Output", "Y", "FusedAttentionOp");

    // x: qkv's input [batch_size, seq_len, dim_embed]
    // y: qkv's weight: [3, num_head, dim_head, dim_embed]
    auto x_dim = ctx->GetInputDim("X");
    auto y_dim = ctx->GetInputDim("QKVW");
    PADDLE_ENFORCE_EQ(x_dim.size(), 3, platform::errors::InvalidArgument(
                                           "The dimensions of x must be 3"
                                           "(batch_size, seq_len, dim_embed),"
                                           "but received dimensions of"
                                           "Input is [%d]",
                                           x_dim.size()));
    PADDLE_ENFORCE_EQ(y_dim.size(), 4,
                      platform::errors::InvalidArgument(
                          "The dimensions of qkv_weight must be 4"
                          "(3, num_head, dim_head, dim_embed),"
                          "but received dimensions of"
                          "Input is [%d]",
                          y_dim.size()));
    PADDLE_ENFORCE_EQ(x_dim[2], y_dim[3],
                      platform::errors::InvalidArgument(
                          "ShapeError: the dimension of x_dim[2] and y_dim[3]"
                          "must be equal. But received: the shape "
                          "of input x = [%s], and the shape of "
                          "input qkv_weight = [%s]",
                          x_dim, y_dim));

110 111 112 113
    if (ctx->Attrs().Get<bool>("pre_layer_norm") == true) {
      ctx->SetOutputDim("LnMean", {x_dim[0] * x_dim[1]});
      ctx->SetOutputDim("LnVariance", {x_dim[0] * x_dim[1]});
      ctx->SetOutputDim("LnOut", ctx->GetInputDim("X"));
L
Li Min 已提交
114 115 116 117
    } else {
      ctx->SetOutputDim("Ln2Mean", {x_dim[0] * x_dim[1]});
      ctx->SetOutputDim("Ln2Variance", {x_dim[0] * x_dim[1]});
      ctx->SetOutputDim("BiasDropoutResidualOut", ctx->GetInputDim("X"));
118
    }
L
Li Min 已提交
119 120 121 122 123 124 125 126 127 128
    // [batch_size, seq_len, 3, num_head, head_size]
    ctx->SetOutputDim("QKVOut",
                      {x_dim[0], x_dim[1], y_dim[0], y_dim[1], y_dim[2]});
    ctx->SetOutputDim("QKVBiasOut",
                      {x_dim[0], x_dim[1], y_dim[0], y_dim[1], y_dim[2]});
    // [3, batch_size, num_head, seq_len, head_size]
    ctx->SetOutputDim("TransposeOut2",
                      {y_dim[0], x_dim[0], y_dim[1], x_dim[1], y_dim[2]});
    // [batch, num_head, seq_len, seq_len]
    ctx->SetOutputDim("QKOut", {x_dim[0], y_dim[1], x_dim[1], x_dim[1]});
129 130 131 132

    if (ctx->HasInput("SrcMask")) {
      ctx->SetOutputDim("SrcMaskOut", {x_dim[0], y_dim[1], x_dim[1], x_dim[1]});
    }
L
Li Min 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    // the same as QKOut's shape.
    ctx->SetOutputDim("AttnDropoutOut",
                      {x_dim[0], y_dim[1], x_dim[1], x_dim[1]});
    if (ctx->Attrs().Get<bool>("attn_dropout_is_test") == false) {
      ctx->SetOutputDim("AttnDropoutMaskOut",
                        {x_dim[0], y_dim[1], x_dim[1], x_dim[1]});
    }
    ctx->SetOutputDim("SoftmaxOut", {x_dim[0], y_dim[1], x_dim[1], x_dim[1]});
    // [batch_size, num_heads, seq_len, head_dim]
    ctx->SetOutputDim("QKTVOut", {x_dim[0], y_dim[1], x_dim[1], y_dim[2]});
    // [batch_size, seq_len, number of heads*head size]
    ctx->SetOutputDim("FMHAOut", {x_dim[0], x_dim[1], y_dim[1], y_dim[2]});
    ctx->SetOutputDim("OutLinearOut", ctx->GetInputDim("X"));

    if (ctx->Attrs().Get<bool>("dropout_is_test") == false) {
      ctx->SetOutputDim("DropoutMaskOut", ctx->GetInputDim("X"));
    }
L
Li Min 已提交
150

L
Li Min 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
    ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input = ctx.Input<Tensor>("X");
    auto input_data_type = input->type();
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

class FusedAttentionOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "The input tensor.");
    AddInput("LnScale",
             "(optional) Scale is a 1-dimensional tensor of size "
             "H. Here, H represents the last dimension of its input tensor.")
        .AsDispensable();
    AddInput("LnBias",
             "(optional) Bias is a 1-dimensional tensor of size "
             "H. Here, H represents the last dimension of its input tensor.")
        .AsDispensable();
    AddInput("QKVW", "The qkv weight tensor.");
    AddInput("QKVBias", "The qkv bias tensor.");
    AddInput("SrcMask", "(optional) The attention mask tensor in fmha.")
        .AsDispensable();
    AddInput("OutLinearW", "The out_linear weight tensor.");
    AddInput("OutLinearBias", "The out_linear bias tensor.");
    AddInput("Ln2Scale",
             "(optional) Scale is a 1-dimensional tensor of size "
             "H. Here, H represents the last dimension of its input tensor.")
        .AsDispensable();
    AddInput("Ln2Bias",
             "(optional) Bias is a 1-dimensional tensor of size "
             "H. Here, H represents the last dimension of its input tensor.")
        .AsDispensable();
    AddOutput("LnMean", "Mean of the current mini batch.").AsIntermediate();
    AddOutput("LnVariance", "Variance of the current mini batch.")
        .AsIntermediate();
    AddOutput("LnOut", "The output of pre layer_norm.").AsIntermediate();
    AddOutput("QKVOut", "Result after qkv.").AsIntermediate();
    AddOutput("QKVBiasOut", "Result after qkv and bias op.").AsIntermediate();
    AddOutput("TransposeOut2", "Result in fmha.").AsIntermediate();
    AddOutput("QKOut", "Result in fmha.").AsIntermediate();
    AddOutput("QKTVOut", "Result in fmha.").AsIntermediate();
    AddOutput("SoftmaxOut", "Result in fmha.").AsIntermediate();
    AddOutput("AttnDropoutMaskOut", "Result in fmha.").AsIntermediate();
    AddOutput("AttnDropoutOut", "Result in fmha.").AsIntermediate();
    AddOutput("SrcMaskOut", "Result in fmha.").AsIntermediate();
    AddOutput("FMHAOut", "Result after fmha.").AsIntermediate();
    AddOutput("OutLinearOut", "Result after out_linear.").AsIntermediate();
    AddOutput("DropoutMaskOut", "The random sampled dropout mask.")
        .AsIntermediate();
    AddOutput("Ln2Mean", "Mean of the current mini batch.").AsIntermediate();
    AddOutput("Ln2Variance", "Variance of the current mini batch.")
        .AsIntermediate();
    AddOutput("BiasDropoutResidualOut",
              "Result of residual + dropout(src + bias).")
        .AsIntermediate();
    AddOutput("Y", "Result after attention.");

    AddAttr<bool>("pre_layer_norm",
                  "if true, the attention op uses pre_layer_norm architecure, "
                  "else, uses post_layer_norm architecuture. "
                  "[default false].")
        .SetDefault(false);
    AddAttr<float>("epsilon",
                   "Constant for numerical stability [default 1e-5].")
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &epsilon) {
          PADDLE_ENFORCE_EQ(epsilon >= 0.0f && epsilon <= 0.001f, true,
                            platform::errors::InvalidArgument(
                                "'epsilon' in Op(LayerNorm) should be between"
                                "0.0 and 0.001, But received [%s].",
                                epsilon));
        });

    // for dropout in fmha.
    AddAttr<float>("attn_dropout_rate", "Probability of setting units to zero.")
        .SetDefault(.5f)
        .AddCustomChecker([](const float &drop_p) {
          PADDLE_ENFORCE_EQ(
              drop_p >= 0.0f && drop_p <= 1.0f, true,
              platform::errors::InvalidArgument(
                  "'attn_dropout_rate' must be between 0.0 and 1.0."));
        });
    AddAttr<bool>("attn_dropout_is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
    AddAttr<bool>("attn_dropout_fix_seed",
                  "A flag indicating whether to use a fixed seed to generate "
                  "random mask. NOTE: DO NOT set this flag to true in "
                  "training. Setting this flag to true is only useful in "
                  "unittest or for debug that always the same output units "
                  "will be dropped.")
        .SetDefault(true);
    AddAttr<int>("attn_dropout_seed", "Dropout random seed.").SetDefault(0);
    AddAttr<std::string>(
        "attn_dropout_implementation",
        "[\"downgrade_in_infer\"|\"upscale_in_train\"]"
        "There are two kinds of ways to implement dropout"
        "(the mask below is a tensor have the same shape with input"
        "the value of mask is 0 or 1, the ratio of 0 is dropout_rate)"
        "1. downgrade_in_infer(default), downgrade the outcome at inference "
        "time"
        "   train: out = input * mask"
        "   inference: out = input * (1.0 - dropout_rate)"
        "2. upscale_in_train, upscale the outcome at training time, do nothing "
        "in inference"
        "   train: out = input * mask / ( 1.0 - dropout_rate )"
        "   inference: out = input"
        "   dropout op can be removed from the program. the program will be "
        "efficient")
        .SetDefault("upscale_in_train")
        .AddCustomChecker([](const std::string &type) {
          PADDLE_ENFORCE_EQ(
              type == "downgrade_in_infer" || type == "upscale_in_train", true,
              platform::errors::InvalidArgument(
                  "dropout_implementation can only be downgrade_in_infer or "
                  "upscale_in_train"));
        });

    AddAttr<float>("dropout_rate", "Probability of setting units to zero.")
        .SetDefault(.5f)
        .AddCustomChecker([](const float &drop_p) {
          PADDLE_ENFORCE_EQ(drop_p >= 0.0f && drop_p <= 1.0f, true,
                            platform::errors::InvalidArgument(
                                "'dropout_rate' must be between 0.0 and 1.0."));
        });

    AddAttr<bool>("dropout_is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
    AddAttr<bool>("dropout_fix_seed",
                  "A flag indicating whether to use a fixed seed to generate "
                  "random mask. NOTE: DO NOT set this flag to true in "
                  "training. Setting this flag to true is only useful in "
                  "unittest or for debug that always the same output units "
                  "will be dropped.")
        .SetDefault(true);
    AddAttr<int>("dropout_seed", "Dropout random seed.").SetDefault(0);
    AddAttr<std::string>(
        "dropout_implementation",
        "[\"downgrade_in_infer\"|\"upscale_in_train\"]"
        "The meaning is the same as 'attn_dropout_implementation'.")
        .SetDefault("downgrade_in_infer")
        .AddCustomChecker([](const std::string &type) {
          PADDLE_ENFORCE_EQ(
              type == "downgrade_in_infer" || type == "upscale_in_train", true,
              platform::errors::InvalidArgument(
                  "dropout_implementation can only be downgrade_in_infer or "
                  "upscale_in_train"));
        });
    AddAttr<float>("ln_epsilon",
                   "Constant for numerical stability [default 1e-5].")
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &ln_epsilon) {
          PADDLE_ENFORCE_EQ(ln_epsilon >= 0.0f && ln_epsilon <= 0.001f, true,
                            platform::errors::InvalidArgument(
                                "'epsilon' of the second LayerNorm in Fused "
                                "attention op should be between"
                                "0.0 and 0.001, But received [%s].",
                                ln_epsilon));
        });

    AddComment(R"DOC(
L
Li Min 已提交
321 322 323 324 325
  Add fused attention op whose logic is as follows:
  // @input: [batch_size, seq_len, 3, num_head, head_dim] 
  // @final_out: [batch_size, seq_len, num_heads, head_dim] 
  if (pre_layernorm)
    out = layer_norm(input);
L
Li Min 已提交
326 327
	out = compute_qkv(out) + bias;
	// fmha module
L
Li Min 已提交
328 329 330 331 332 333 334 335
  {
    out = transpose(out, perm=[2, 0, 3, 1, 4]);
    out = q * k^t;
    out = attn_mask + out;
    out = softmax(out);
    out = dropout(out);
    out = out * v;
    out = transpose(out, perm=[0, 2, 1, 3]);
L
Li Min 已提交
336
                
L
Li Min 已提交
337
  }
L
Li Min 已提交
338
	out = out_linear(out);
L
Li Min 已提交
339 340 341 342
  if (pre_layernorm)
    final_out = residual + dropout(bias + out);
  else
    final_out = layer_norm(residual + dropout(bias + out));
L
Li Min 已提交
343 344 345 346
    )DOC");
  }
};

347 348 349 350 351 352 353 354 355 356
class FusedAttentionGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(
        ctx->Attrs().Get<bool>("attn_dropout_is_test"), false,
        platform::errors::InvalidArgument(
            "GradOp is only callable when attn_dropout_is_test is false"));

L
Li Min 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370
    if (ctx->Attrs().Get<bool>("pre_layer_norm") == false) {
      OP_INOUT_CHECK(ctx->HasInput("Ln2Mean"), "Input", "Ln2Mean",
                     "FusedAttentionGrad");
      OP_INOUT_CHECK(ctx->HasInput("Ln2Variance"), "Input", "Ln2Variance",
                     "FusedAttentionGrad");
      if (ctx->HasOutput(framework::GradVarName("Ln2Scale"))) {
        ctx->SetOutputDim(framework::GradVarName("Ln2Scale"),
                          ctx->GetInputDim("Ln2Scale"));
      }
      if (ctx->HasOutput(framework::GradVarName("Ln2Bias"))) {
        ctx->SetOutputDim(framework::GradVarName("Ln2Bias"),
                          ctx->GetInputDim("Ln2Bias"));
      }
    } else {
371 372 373 374
      OP_INOUT_CHECK(ctx->HasInput("LnMean"), "Input", "LnMean",
                     "FusedAttentionGrad");
      OP_INOUT_CHECK(ctx->HasInput("LnVariance"), "Input", "LnVariance",
                     "FusedAttentionGrad");
375 376 377
      OP_INOUT_CHECK(ctx->HasInput("LnOut"), "Input", "LnOut",
                     "FusedAttentionGrad");
    }
L
Li Min 已提交
378 379

    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FusedAttentionGrad");
380 381 382 383 384 385 386 387 388
    OP_INOUT_CHECK(ctx->HasInput("QKVW"), "Input", "QKVW",
                   "FusedAttentionGrad");
    OP_INOUT_CHECK(ctx->HasInput("QKVBias"), "Input", "QKVBias",
                   "FusedAttentionGrad");
    OP_INOUT_CHECK(ctx->HasInput("OutLinearW"), "Input", "OutLinearW",
                   "FusedAttentionGrad");
    OP_INOUT_CHECK(ctx->HasInput("OutLinearBias"), "Input", "OutLinearBias",
                   "FusedAttentionGrad");

389 390 391 392 393 394 395 396 397
    if (ctx->Attrs().Get<bool>("pre_layer_norm") == true) {
      if (ctx->HasOutput(framework::GradVarName("LnScale"))) {
        ctx->SetOutputDim(framework::GradVarName("LnScale"),
                          ctx->GetInputDim("LnScale"));
      }
      if (ctx->HasOutput(framework::GradVarName("LnBias"))) {
        ctx->SetOutputDim(framework::GradVarName("LnBias"),
                          ctx->GetInputDim("LnBias"));
      }
398 399 400 401 402 403 404 405 406 407 408 409 410
    }
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
    }

    ctx->SetOutputDim(framework::GradVarName("OutLinearBias"),
                      ctx->GetInputDim("OutLinearBias"));
    ctx->SetOutputDim(framework::GradVarName("OutLinearW"),
                      ctx->GetInputDim("OutLinearW"));
    ctx->SetOutputDim(framework::GradVarName("QKVW"), ctx->GetInputDim("QKVW"));
    ctx->SetOutputDim(framework::GradVarName("QKVBias"),
                      ctx->GetInputDim("QKVBias"));

411 412 413
    if (ctx->Attrs().Get<bool>("pre_layer_norm") == true) {
      ctx->SetOutputDim(framework::GradVarName("LnOut"),
                        ctx->GetInputDim("LnOut"));
L
Li Min 已提交
414 415 416
    } else {
      ctx->SetOutputDim(framework::GradVarName("BiasDropoutResidualOut"),
                        ctx->GetInputDim("BiasDropoutResidualOut"));
417
    }
418 419 420 421 422 423 424 425 426 427 428 429
    ctx->SetOutputDim(framework::GradVarName("FMHAOut"),
                      ctx->GetInputDim("FMHAOut"));
    ctx->SetOutputDim(framework::GradVarName("QKTVOut"),
                      ctx->GetInputDim("QKTVOut"));
    ctx->SetOutputDim(framework::GradVarName("TransposeOut2"),
                      ctx->GetInputDim("TransposeOut2"));
    ctx->SetOutputDim(framework::GradVarName("QKOut"),
                      ctx->GetInputDim("QKOut"));
    ctx->SetOutputDim(framework::GradVarName("SoftmaxOut"),
                      ctx->GetInputDim("SoftmaxOut"));
    ctx->SetOutputDim(framework::GradVarName("AttnDropoutOut"),
                      ctx->GetInputDim("AttnDropoutOut"));
430 431 432 433 434

    if (ctx->HasOutput(framework::GradVarName("SrcMaskOut"))) {
      ctx->SetOutputDim(framework::GradVarName("SrcMaskOut"),
                        ctx->GetInputDim("SrcMaskOut"));
    }
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
    ctx->SetOutputDim(framework::GradVarName("QKVOut"),
                      ctx->GetInputDim("QKVOut"));
    ctx->SetOutputDim(framework::GradVarName("QKVBiasOut"),
                      ctx->GetInputDim("QKVBiasOut"));
    ctx->SetOutputDim(framework::GradVarName("OutLinearOut"),
                      ctx->GetInputDim("OutLinearOut"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input = ctx.Input<Tensor>("X");
    auto input_data_type = input->type();
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

template <typename T>
class FusedAttentionGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("fused_attention_grad");
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));

    // inputs x, parameters and their grad.
    op->SetInput("X", this->Input("X"));
    op->SetInput("QKVW", this->Input("QKVW"));
    op->SetInput("QKVBias", this->Input("QKVBias"));
466 467 468 469 470 471 472 473

    if (this->HasInput("SrcMask")) {
      op->SetInput("SrcMask", this->Input("SrcMask"));
      op->SetInput("SrcMaskOut", this->Output("SrcMaskOut"));
      op->SetOutput(framework::GradVarName("SrcMaskOut"),
                    this->OutputGrad("SrcMaskOut"));
    }

474 475
    op->SetInput("OutLinearW", this->Input("OutLinearW"));
    op->SetInput("OutLinearBias", this->Input("OutLinearBias"));
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490

    op->SetAttrMap(this->Attrs());
    bool is_pre_layer_norm =
        BOOST_GET_CONST(bool, op->GetAttr("pre_layer_norm"));
    if (is_pre_layer_norm) {
      if (this->HasInput("LnScale")) {
        op->SetInput("LnScale", this->Input("LnScale"));
        op->SetOutput(framework::GradVarName("LnScale"),
                      this->InputGrad("LnScale"));
      }
      if (this->HasInput("LnBias")) {
        op->SetInput("LnBias", this->Input("LnBias"));
        op->SetOutput(framework::GradVarName("LnBias"),
                      this->InputGrad("LnBias"));
      }
L
Li Min 已提交
491 492 493 494 495 496 497 498 499 500 501
    } else {
      if (this->HasInput("Ln2Scale")) {
        op->SetInput("Ln2Scale", this->Input("Ln2Scale"));
        op->SetOutput(framework::GradVarName("Ln2Scale"),
                      this->InputGrad("Ln2Scale"));
      }
      if (this->HasInput("Ln2Bias")) {
        op->SetInput("Ln2Bias", this->Input("Ln2Bias"));
        op->SetOutput(framework::GradVarName("Ln2Bias"),
                      this->InputGrad("Ln2Bias"));
      }
502 503 504 505 506 507 508 509 510 511 512 513
    }

    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("QKVW"), this->InputGrad("QKVW"));
    op->SetOutput(framework::GradVarName("QKVBias"),
                  this->InputGrad("QKVBias"));
    op->SetOutput(framework::GradVarName("OutLinearBias"),
                  this->InputGrad("OutLinearBias"));
    op->SetOutput(framework::GradVarName("OutLinearW"),
                  this->InputGrad("OutLinearW"));

    // use forward outputs as backward inputs.
514 515 516 517 518 519 520 521 522 523
    if (is_pre_layer_norm) {
      if (this->HasOutput("LnOut")) {
        op->SetInput("LnOut", this->Output("LnOut"));
      }
      if (this->HasOutput("LnMean")) {
        op->SetInput("LnMean", this->Output("LnMean"));
      }
      if (this->HasOutput("LnVariance")) {
        op->SetInput("LnVariance", this->Output("LnVariance"));
      }
L
Li Min 已提交
524 525 526 527 528
    } else {
      op->SetInput("Ln2Mean", this->Output("Ln2Mean"));
      op->SetInput("Ln2Variance", this->Output("Ln2Variance"));
      op->SetInput("BiasDropoutResidualOut",
                   this->Output("BiasDropoutResidualOut"));
529
    }
530 531 532 533 534 535 536 537
    op->SetInput("QKVOut", this->Output("QKVOut"));
    op->SetInput("QKVBiasOut", this->Output("QKVBiasOut"));
    op->SetInput("TransposeOut2", this->Output("TransposeOut2"));
    op->SetInput("QKOut", this->Output("QKOut"));
    op->SetInput("QKTVOut", this->Output("QKTVOut"));
    op->SetInput("SoftmaxOut", this->Output("SoftmaxOut"));
    op->SetInput("AttnDropoutMaskOut", this->Output("AttnDropoutMaskOut"));
    op->SetInput("AttnDropoutOut", this->Output("AttnDropoutOut"));
538

539 540 541 542 543 544
    op->SetInput("FMHAOut", this->Output("FMHAOut"));
    op->SetInput("OutLinearOut", this->Output("OutLinearOut"));
    op->SetInput("DropoutMaskOut", this->Output("DropoutMaskOut"));
    op->SetInput("QKVOut", this->Output("QKVOut"));

    // backward outputs: dinput
545 546 547 548 549
    if (is_pre_layer_norm) {
      if (this->HasOutput("LnOut")) {
        op->SetOutput(framework::GradVarName("LnOut"),
                      this->OutputGrad("LnOut"));
      }
L
Li Min 已提交
550 551 552
    } else {
      op->SetOutput(framework::GradVarName("BiasDropoutResidualOut"),
                    this->OutputGrad("BiasDropoutResidualOut"));
553
    }
L
Li Min 已提交
554

555 556 557 558 559 560 561 562 563 564 565 566
    op->SetOutput(framework::GradVarName("QKVOut"), this->OutputGrad("QKVOut"));
    op->SetOutput(framework::GradVarName("QKVBiasOut"),
                  this->OutputGrad("QKVBiasOut"));
    op->SetOutput(framework::GradVarName("QKTVOut"),
                  this->OutputGrad("QKTVOut"));
    op->SetOutput(framework::GradVarName("TransposeOut2"),
                  this->OutputGrad("TransposeOut2"));
    op->SetOutput(framework::GradVarName("QKOut"), this->OutputGrad("QKOut"));
    op->SetOutput(framework::GradVarName("SoftmaxOut"),
                  this->OutputGrad("SoftmaxOut"));
    op->SetOutput(framework::GradVarName("AttnDropoutOut"),
                  this->OutputGrad("AttnDropoutOut"));
567

568 569 570 571 572 573 574
    op->SetOutput(framework::GradVarName("FMHAOut"),
                  this->OutputGrad("FMHAOut"));
    op->SetOutput(framework::GradVarName("OutLinearOut"),
                  this->OutputGrad("OutLinearOut"));
  }
};

L
Li Min 已提交
575 576 577 578 579
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(fused_attention, ops::FusedAttentionOp,
580 581 582 583
                  ops::FusedAttentionOpMaker,
                  ops::FusedAttentionGradOpMaker<paddle::framework::OpDesc>,
                  ops::FusedAttentionGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(fused_attention_grad, ops::FusedAttentionGradOp);