dropout_op.cc 8.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
Xinghai Sun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xinghai Sun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
Xinghai Sun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xinghai Sun 已提交
14

S
sneaxiy 已提交
15
#include <memory>
P
phlrain 已提交
16
#include <string>
17

H
hong 已提交
18
#include "paddle/fluid/framework/infershape_utils.h"
H
hong 已提交
19
#include "paddle/fluid/framework/op_registry.h"
H
hong 已提交
20
#include "paddle/phi/infermeta/binary.h"
X
Xinghai Sun 已提交
21 22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

using framework::Tensor;

class DropoutOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

M
mapingshuo 已提交
31 32 33 34 35 36
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
  }
37 38

  framework::OpKernelType GetKernelTypeForVar(
39 40
      const std::string& var_name,
      const Tensor& tensor,
41 42 43 44 45 46 47
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "Seed") {
      VLOG(10) << "var_name:" << var_name
               << " does not need to transform in dropout op";
      return expected_kernel_type;
    }

48 49
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
50
  }
X
Xinghai Sun 已提交
51 52 53 54
};

class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
55
  void Make() override {
X
Xinghai Sun 已提交
56
    AddInput("X", "The input of dropout op.");
M
mapingshuo 已提交
57 58 59
    AddInput("Seed",
             "The seed of dropout op, it has higher priority than the attr "
             "fix_seed and seed")
60 61
        .AsDispensable()
        .AsExtra();
X
Xinghai Sun 已提交
62
    AddOutput("Out", "The output of dropout op.");
63 64 65
    AddOutput("Mask", "The random sampled dropout mask.")
        .AsIntermediate()
        .AsExtra();
X
Xinghai Sun 已提交
66

K
Kexin Zhao 已提交
67
    AddAttr<float>("dropout_prob", "Probability of setting units to zero.")
C
chengduoZH 已提交
68 69
        .SetDefault(.5f)
        .AddCustomChecker([](const float& drop_p) {
70 71
          PADDLE_ENFORCE_EQ(drop_p >= 0.0f && drop_p <= 1.0f,
                            true,
72 73
                            platform::errors::InvalidArgument(
                                "'dropout_prob' must be between 0.0 and 1.0."));
C
chengduoZH 已提交
74
        });
75 76 77 78
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
79 80 81 82 83 84
    AddAttr<bool>("fix_seed",
                  "A flag indicating whether to use a fixed seed to generate "
                  "random mask. NOTE: DO NOT set this flag to true in "
                  "training. Setting this flag to true is only useful in "
                  "unittest or for debug that always the same output units "
                  "will be dropped.")
85 86
        .SetDefault(false)
        .AsExtra();
87
    AddAttr<int>("seed", "Dropout random seed.").SetDefault(0).AsExtra();
P
phlrain 已提交
88 89 90 91 92 93 94 95 96
    AddAttr<std::string>(
        "dropout_implementation",
        "[\"downgrade_in_infer\"|\"upscale_in_train\"]"
        "There are two kinds of ways to implement dropout"
        "(the mask below is a tensor have the same shape with input"
        "the value of mask is 0 or 1, the ratio of 0 is dropout_prob)"
        "1. downgrade_in_infer(default), downgrade the outcome at inference "
        "time"
        "   train: out = input * mask"
C
ceci3 已提交
97
        "   inference: out = input * (1.0 - dropout_prob)"
P
phlrain 已提交
98 99 100 101 102 103 104 105
        "2. upscale_in_train, upscale the outcome at training time, do nothing "
        "in inference"
        "   train: out = input * mask / ( 1.0 - dropout_prob )"
        "   inference: out = input"
        "   dropout op can be removed from the program. the program will be "
        "efficient")
        .SetDefault("downgrade_in_infer")
        .AddCustomChecker([](const std::string& type) {
106
          PADDLE_ENFORCE_EQ(
107 108
              type == "downgrade_in_infer" || type == "upscale_in_train",
              true,
109 110 111
              platform::errors::InvalidArgument(
                  "dropout_implementation can only be downgrade_in_infer or "
                  "upscale_in_train"));
P
phlrain 已提交
112
        });
K
Kexin Zhao 已提交
113

114 115 116
    AddComment(R"DOC(
Dropout Operator.

K
Kexin Zhao 已提交
117
Dropout refers to randomly dropping out units in a nerual network. It is a
118 119
regularization technique for reducing overfitting by preventing neuron
co-adaption during training. The dropout operator randomly set (according to
120
the given dropout probability) the outputs of some units to zero, while others
K
Kexin Zhao 已提交
121 122
are set equal to their corresponding inputs.

123
)DOC");
X
Xinghai Sun 已提交
124 125 126 127 128 129 130
  }
};

class DropoutOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

131
  void InferShape(framework::InferShapeContext* ctx) const override {
132
    OP_INOUT_CHECK(ctx->HasInput("Mask"), "Input", "Mask", "DropoutGrad");
133 134 135 136
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
                   "Input",
                   framework::GradVarName("Out"),
                   "DropoutGrad");
Q
Qiao Longfei 已提交
137 138

    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
S
sneaxiy 已提交
139 140 141 142 143

    ctx->SetOutputDim(framework::GradVarName("X"), out_dims);
    ctx->ShareLoD(framework::GradVarName("Out"),
                  /*->*/ framework::GradVarName("X"));
  }
Z
Zeng Jinle 已提交
144 145 146 147

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
148 149 150
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
Z
Zeng Jinle 已提交
151
  }
S
sneaxiy 已提交
152 153
};

H
hong 已提交
154 155
template <typename T>
class DropoutGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
156
 public:
H
hong 已提交
157
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
158 159

 protected:
160
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
161
    op->SetType("dropout_grad");
H
hong 已提交
162 163 164 165
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("Mask", this->Output("Mask"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
X
Xinghai Sun 已提交
166 167 168
  }
};

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
class DropoutNdOpMaker : public DropoutOpMaker {
 public:
  void Make() override {
    DropoutOpMaker::Make();
    AddAttr<std::vector<int>>("axis",
                              "(std::vector<int>). List of integers,"
                              " indicating the dimensions to be dropout_nd.")
        .SetDefault({});
  }
};

template <typename T>
class DropoutNdGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("dropout_nd_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("Mask", this->Output("Mask"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
  }
};

X
Xinghai Sun 已提交
195 196 197 198
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
199

200 201
DECLARE_INFER_SHAPE_FUNCTOR(dropout,
                            DropoutInferShapeFunctor,
H
hong 已提交
202
                            PD_INFER_META(phi::DropoutInferMeta));
203 204 205
REGISTER_OPERATOR(dropout,
                  ops::DropoutOp,
                  ops::DropoutOpMaker,
H
hong 已提交
206
                  ops::DropoutGradOpMaker<paddle::framework::OpDesc>,
H
hong 已提交
207 208
                  ops::DropoutGradOpMaker<paddle::imperative::OpBase>,
                  DropoutInferShapeFunctor);
209
REGISTER_OPERATOR(dropout_grad, ops::DropoutOpGrad);
210

211 212
DECLARE_INFER_SHAPE_FUNCTOR(dropout_nd,
                            DropoutNdInferShapeFunctor,
213
                            PD_INFER_META(phi::DropoutNdInferMeta));
214 215 216
REGISTER_OPERATOR(dropout_nd,
                  ops::DropoutOp,
                  ops::DropoutNdOpMaker,
217 218 219 220
                  ops::DropoutNdGradOpMaker<paddle::framework::OpDesc>,
                  ops::DropoutNdGradOpMaker<paddle::imperative::OpBase>,
                  DropoutNdInferShapeFunctor);
REGISTER_OPERATOR(dropout_nd_grad, ops::DropoutOpGrad);