mkldnn_helper.h 17.5 KB
Newer Older
1
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
T
tensor-tang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <algorithm>
J
Jacek Czaja 已提交
17
#include <iostream>
P
Physher 已提交
18
#include <memory>
J
Jacek Czaja 已提交
19
#include <sstream>
G
gongweibao 已提交
20
#include <string>
21
#include <utility>
22
#include <vector>
23
#include "mkldnn.hpp"
24
#include "paddle/fluid/framework/operator.h"
M
mozga-intel 已提交
25
#include "paddle/fluid/platform/place.h"
26
#include "paddle/fluid/platform/profiler.h"
T
tensor-tang 已提交
27
namespace paddle {
28
#ifdef PADDLE_WITH_MKLDNN
A
Adam 已提交
29
using MKLDNNMemoryFormat = mkldnn::memory::format_tag;
30
#endif
T
tensor-tang 已提交
31 32 33 34 35
namespace platform {

using MKLDNNStream = mkldnn::stream;
using MKLDNNEngine = mkldnn::engine;
using MKLDNNMemory = mkldnn::memory;
36
using MKLDNNMemoryDescriptor = mkldnn::memory::desc;
T
tensor-tang 已提交
37 38 39
using MKLDNNPrimitive = mkldnn::primitive;
using MKLDNNPrimitiveDesc = mkldnn::handle<mkldnn_primitive_desc_t>;

40 41 42 43 44
typedef std::unique_ptr<MKLDNNStream> MKLDNNStreamPtr;
typedef std::unique_ptr<MKLDNNEngine> MKLDNNEnginePtr;
typedef std::unique_ptr<MKLDNNMemory> MKLDNNMemoryPtr;
typedef std::unique_ptr<MKLDNNPrimitive> MKLDNNPrimitivePtr;
typedef std::unique_ptr<MKLDNNPrimitiveDesc> MKLDNNPrimitiveDescPtr;
T
tensor-tang 已提交
45

46 47 48 49 50
template <typename Type>
void* to_void_cast(const Type* t) {
  return static_cast<void*>(const_cast<Type*>(t));
}

K
Krzysztof Binias 已提交
51 52 53 54 55
template <typename Type>
void* to_void_reinterpret_cast(const Type* t) {
  return reinterpret_cast<void*>(const_cast<Type*>(t));
}

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
template <class Type>
using tf_desc = typename Type::desc;

template <class Type>
using tf_pd = typename Type::primitive_desc;

template <typename Type, typename Engine, typename... Args>
std::shared_ptr<tf_pd<Type>> MKLDNNFwdPrimitiveDesc(const Engine& e,
                                                    Args&&... args) {
  auto desc = tf_desc<Type>(mkldnn::prop_kind::forward, (args)...);
  auto pd = new tf_pd<Type>(desc, e);
  return std::shared_ptr<tf_pd<Type>>(pd);
}

template <typename Type, typename Engine, typename Primitive, typename... Args>
tf_pd<Type> MKLDNNBwdPrimitiveDesc(const Engine& e, const Primitive& p,
                                   Args&&... args) {
  auto desc = tf_desc<Type>(args...);
  return tf_pd<Type>(desc, e, p);
}

77 78 79
inline void MatchShapeToLayout(framework::Tensor* tensor_in,
                               framework::DataLayout from,
                               framework::DataLayout to) {
80 81 82
  // In these data layouts, channel dimension is either on 2nd position: nChw or
  // at last nhwC, so for dim==2 these layouts are the same and nothing should
  // be done. Similarly for dim==1 when you have just one possible combination.
83 84 85 86
  if (tensor_in->dims().size() < 3) {
    return;
  }

J
Jacek Czaja 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
  auto print_dims = [](const std::vector<int>& dims) {
    std::ostringstream oss;

    if (!dims.empty()) {
      oss << "[";
      // Convert all but the last element to avoid a trailing ","
      std::copy(dims.begin(), dims.end() - 1,
                std::ostream_iterator<int>(oss, ","));

      // Now add the last element with no delimiter
      oss << dims.back() << "]";
    }

    return oss.str();
  };

103 104 105 106 107 108
  switch (from) {
    case framework::DataLayout::kMKLDNN:
      if (to == framework::DataLayout::kNHWC) {
        auto dims = framework::vectorize<int>(tensor_in->dims());
        std::rotate(dims.begin() + 1, dims.begin() + 2, dims.end());
        tensor_in->Resize(framework::make_ddim(dims));
J
Jacek Czaja 已提交
109 110
        VLOG(3) << "Rotating Shape from: kMKLDNN to: kNHWC output_shape"
                << print_dims(dims);
111 112 113 114 115 116 117
      }
      break;
    case framework::DataLayout::kNHWC:
      if (to == framework::DataLayout::kMKLDNN) {
        auto dims = framework::vectorize<int>(tensor_in->dims());
        std::rotate(dims.begin() + 1, dims.end() - 1, dims.end());
        tensor_in->Resize(framework::make_ddim(dims));
J
Jacek Czaja 已提交
118 119
        VLOG(3) << "Rotating Shape from: kNHWC to: kMKLDNN output_shape"
                << print_dims(dims);
120 121 122 123 124 125 126
      }
      break;
    default:
      break;
  }
}

127 128 129 130 131
struct mkldnn_dummy_primitive {
  struct primitive_desc {};
  struct desc {};
};

A
Adam 已提交
132
inline mkldnn::memory::desc MKLDNNMemDesc(const std::vector<int64_t>& dims,
133
                                          mkldnn::memory::data_type data_type,
134
                                          MKLDNNMemoryFormat format) {
A
Adam 已提交
135
  return mkldnn::memory::desc({dims}, data_type, format);
136 137
}

138 139 140 141 142 143 144 145 146 147 148 149
inline void ClearMKLDNNCache(const platform::Place& place) {
  // Clear mkl-dnn cache,
  if (platform::is_cpu_place(place)) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::MKLDNNDeviceContext* dev_ctx =
        (platform::MKLDNNDeviceContext*)pool.Get(place);
    dev_ctx->ResetBlobMap();
    platform::MKLDNNDeviceContext::tls().set_cur_paddle_data_layout(
        paddle::framework::DataLayout::kNCHW);
  }
}

150 151 152 153 154 155 156 157 158 159
inline void DontClearMKLDNNCache(const platform::Place& place) {
  // Clear mkl-dnn cache,
  if (platform::is_cpu_place(place)) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::MKLDNNDeviceContext* dev_ctx =
        (platform::MKLDNNDeviceContext*)pool.Get(place);
    dev_ctx->BlockNextCacheClearing();
  }
}

160 161
template <typename Type>
mkldnn::memory::data_type MKLDNNGetDataType() {
A
Adam 已提交
162
  return mkldnn::memory::data_type::undef;
163 164 165 166
}

template <>
inline mkldnn::memory::data_type MKLDNNGetDataType<float>() {
167 168 169 170 171
  return mkldnn::memory::data_type::f32;
}
template <>
inline mkldnn::memory::data_type MKLDNNGetDataType<int32_t>() {
  return mkldnn::memory::data_type::s32;
172
}
P
Physher 已提交
173 174
template <>
inline mkldnn::memory::data_type MKLDNNGetDataType<int8_t>() {
175
  return mkldnn::memory::data_type::s8;
P
Physher 已提交
176 177 178
}
template <>
inline mkldnn::memory::data_type MKLDNNGetDataType<uint8_t>() {
179
  return mkldnn::memory::data_type::u8;
P
Physher 已提交
180 181
}

182 183 184 185 186 187
template <>
inline mkldnn::memory::data_type
MKLDNNGetDataType<paddle::platform::bfloat16>() {
  return mkldnn::memory::data_type::bf16;
}

A
Adam 已提交
188 189
inline void Reorder(mkldnn::memory src, mkldnn::memory dst,
                    const mkldnn::engine& engine) {
M
mozga-intel 已提交
190
  auto reorder_prim = mkldnn::reorder(src, dst);
A
Adam 已提交
191
  mkldnn::stream astream(engine);
192 193
  platform::RecordEvent record_reorder("int_reorder",
                                       platform::EventRole::kUniqueOp);
A
Adam 已提交
194 195
  reorder_prim.execute(astream, src, dst);
  astream.wait();
M
mozga-intel 已提交
196 197
}

A
Adam 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
inline mkldnn::memory::format_tag GetMKLDNNFormat(
    mkldnn::memory::desc mem_desc) {
  auto ndims = mem_desc.data.ndims;
  auto strides = mem_desc.data.format_desc.blocking.strides;
  auto inner_nblks = mem_desc.data.format_desc.blocking.inner_nblks;
  auto inner_blks = mem_desc.data.format_desc.blocking.inner_blks;
  auto inner_idxs = mem_desc.data.format_desc.blocking.inner_idxs;

  if (ndims == 1) {
    return mkldnn::memory::format_tag::x;
  } else if (ndims == 2) {
    if (inner_nblks == 0) {
      if (strides[0] >= strides[1]) {
        return mkldnn::memory::format_tag::nc;
      } else {
        return mkldnn::memory::format_tag::cn;
      }
    }
  } else if (ndims == 3) {
    if (inner_nblks == 0) {
      if (strides[0] >= strides[1] && strides[1] >= strides[2]) {
        return mkldnn::memory::format_tag::ncw;
A
Adam 已提交
220 221
      } else if (strides[1] >= strides[0] && strides[0] >= strides[2]) {
        return mkldnn::memory::format_tag::ntc;
A
Adam 已提交
222 223 224 225 226 227 228 229 230
      } else {
        return mkldnn::memory::format_tag::nwc;
      }
    }
  } else if (ndims == 4) {
    if (inner_nblks == 0) {
      if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
          strides[2] >= strides[3]) {
        return mkldnn::memory::format_tag::nchw;
231 232 233
      } else if (strides[2] >= strides[3] && strides[3] >= strides[1] &&
                 strides[1] >= strides[0]) {
        return mkldnn::memory::format_tag::cdba;
A
Adam 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
      } else {
        return mkldnn::memory::format_tag::nhwc;
      }
    } else if (inner_nblks == 1) {
      if (inner_blks[0] == 16 && inner_idxs[0] == 1) {
        return mkldnn::memory::format_tag::nChw16c;
      } else if (inner_blks[0] == 8 && inner_idxs[0] == 1) {
        return mkldnn::memory::format_tag::nChw8c;
      } else if (inner_blks[0] == 8 && inner_idxs[0] == 0) {
        if (strides[0] >= strides[2] && strides[2] >= strides[3] &&
            strides[3] >= strides[1]) {
          return mkldnn::memory::format_tag::Acdb8a;
        }
      } else if (inner_blks[0] == 4 && inner_idxs[0] == 1) {
        return mkldnn::memory::format_tag::nChw4c;
      } else if (inner_blks[0] == 16 && inner_idxs[0] == 0) {
        if (strides[0] >= strides[2] && strides[2] >= strides[3] &&
            strides[3] >= strides[1]) {
          return mkldnn::memory::format_tag::Acdb16a;
        }
      }
    } else if (inner_nblks == 2) {
      if (inner_blks[0] == 16 && inner_blks[1] == 16) {
        if (inner_idxs[0] == 1 && inner_idxs[1] == 0) {
          return mkldnn::memory::format_tag::OIhw16i16o;
        }
      } else if (inner_blks[0] == 8 && inner_blks[1] == 8) {
        if (inner_idxs[0] == 1 && inner_idxs[1] == 0) {
          return mkldnn::memory::format_tag::OIhw8i8o;
        }
      }
    }
  } else if (ndims == 5) {
    if (inner_nblks == 0) {
      if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
          strides[2] >= strides[3] && strides[3] >= strides[4]) {
        return mkldnn::memory::format_tag::ncdhw;
      } else {
        return mkldnn::memory::format_tag::ndhwc;
      }
    } else if (inner_nblks == 1) {
      if (inner_blks[0] == 8 && inner_idxs[0] == 0) {
        if (strides[0] >= strides[2] && strides[2] >= strides[3] &&
            strides[3] >= strides[4] && strides[4] >= strides[1]) {
          return mkldnn::memory::format_tag::Acdeb8a;
        }
      } else if (inner_blks[0] == 8 && inner_idxs[0] == 1) {
        if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
            strides[2] >= strides[3] && strides[3] >= strides[4]) {
          return mkldnn::memory::format_tag::aBcde8b;
        }
      } else if (inner_blks[0] == 16 && inner_idxs[0] == 0) {
        if (strides[0] >= strides[2] && strides[2] >= strides[3] &&
            strides[3] >= strides[4] && strides[4] >= strides[1]) {
          return mkldnn::memory::format_tag::Acdeb16a;
        }
290 291 292 293
        if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
            strides[2] >= strides[3] && strides[3] >= strides[4]) {
          return mkldnn::memory::format_tag::Abcde16a;
        }
A
Adam 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
      } else if (inner_blks[0] == 16 && inner_idxs[0] == 1) {
        if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
            strides[2] >= strides[3] && strides[3] >= strides[4]) {
          return mkldnn::memory::format_tag::aBcde16b;
        }
      }
    }
  } else if (ndims == 6) {
    if (inner_nblks == 0) {
      if (strides[0] >= strides[1] && strides[1] >= strides[2] &&
          strides[2] >= strides[3] && strides[3] >= strides[4] &&
          strides[4] >= strides[5]) {
        return mkldnn::memory::format_tag::abcdef;
      }
    }
  }
  // DEBUG CODE - KEEP UNTILL TENSOR.MEMORY_DESC IMPLEMENTED
  // std::cout<<"@@@@@@@@@@ UNDEFINED FORMAT @@@@@@@@@@@@@@@@@@@"<<std::endl;
  // std::cout<<"NDIMS: "<<ndims<<std::endl;
  // std::cout<<"INNER_NBLKS: "<<inner_nblks<<std::endl;
  // for (int i=0;i<ndims;++i) {
  //   std::cout<<"STRIDE["<<i<<"]: "<<strides[i]<<std::endl;
  // }
  // for (int i=0;i<inner_nblks;++i) {
  //   std::cout<<"INNER_BLKS["<<i<<"]: "<<inner_blks[i]<<std::endl;
  // }
  // for (int i=0;i<inner_nblks;++i) {
  //   std::cout<<"INNER_IDXS["<<i<<"]: "<<inner_idxs[i]<<std::endl;
  // }
  return mkldnn::memory::format_tag::undef;
M
mozga-intel 已提交
324 325
}

A
Adam 已提交
326 327 328
inline mkldnn::memory::format_tag GetMKLDNNFormat(const mkldnn::memory memory) {
  auto mem_desc = memory.get_desc();
  return GetMKLDNNFormat(mem_desc);
329 330
}

331 332
inline MKLDNNMemoryFormat MKLDNNFormatForSize(size_t dims_size,
                                              MKLDNNMemoryFormat data_format) {
333
  if (dims_size == 1) {
334
    return MKLDNNMemoryFormat::x;
335
  } else if (dims_size == 2) {
336
    return MKLDNNMemoryFormat::nc;
337
  } else if (dims_size == 3) {
338 339 340 341
    if (data_format == MKLDNNMemoryFormat::nchw) {
      return MKLDNNMemoryFormat::ncw;
    } else if (data_format == MKLDNNMemoryFormat::nhwc) {
      return MKLDNNMemoryFormat::nwc;
342
    }
343
  } else if (dims_size == 4) {
344 345
    if (data_format == MKLDNNMemoryFormat::goihw) {
      return MKLDNNMemoryFormat::oihw;
346
    }
347
  } else if (dims_size == 5) {
348 349
    if (data_format == MKLDNNMemoryFormat::goidhw) {
      return MKLDNNMemoryFormat::oidhw;
350
    }
351 352 353 354
    if (data_format == MKLDNNMemoryFormat::nchw) {
      return MKLDNNMemoryFormat::ncdhw;
    } else if (data_format == MKLDNNMemoryFormat::nhwc) {
      return MKLDNNMemoryFormat::ndhwc;
355
    }
356 357 358 359
  }
  return data_format;
}

360
inline MKLDNNMemoryFormat data_format_to_memory_format(
361 362 363
    const std::string& data_format) {
  switch (framework::StringToDataLayout(data_format)) {
    case framework::DataLayout::kNHWC:
364
      return MKLDNNMemoryFormat::nhwc;
365
    case framework::DataLayout::kNCHW:
366
      return MKLDNNMemoryFormat::nchw;
367
    default:
368
      return MKLDNNMemoryFormat::any;
369 370 371
  }
}

372
inline MKLDNNMemoryFormat StringToMKLDNNFormat(std::string* format) {
373 374 375
  std::transform(format->begin(), format->end(), format->begin(), ::tolower);

  if (!format->compare("nchw")) {
376
    return MKLDNNMemoryFormat::nchw;
377
  } else if (!format->compare("nchw16c")) {
378
    return MKLDNNMemoryFormat::nChw16c;
379
  } else if (!format->compare("nchw8c")) {
380
    return MKLDNNMemoryFormat::nChw8c;
381
  } else if (!format->compare("nhwc")) {
382
    return MKLDNNMemoryFormat::nhwc;
383
  } else {
384
    return MKLDNNMemoryFormat::any;
385 386 387
  }
}

A
Adam 已提交
388 389 390 391 392
inline std::string ThreadIDasStr(void) {
  return std::to_string(
      std::hash<std::thread::id>()(std::this_thread::get_id()));
}

393 394 395
template <typename T>
inline void AppendKey(std::string* key, const T& num) {
  key->append(std::to_string(num));
A
Adam 已提交
396 397
}

A
Adam 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
template <>
inline void AppendKey(std::string* key,
                      const mkldnn::memory::format_tag& format) {
  key->append(std::to_string(static_cast<int>(format)));
}

template <>
inline void AppendKey(std::string* key,
                      const mkldnn::memory::data_type& data_type) {
  key->append(std::to_string(static_cast<int>(data_type)));
}

template <>
inline void AppendKey(std::string* key, const mkldnn::algorithm& algorithm) {
  key->append(std::to_string(static_cast<int>(algorithm)));
}

template <>
inline void AppendKey(std::string* key,
                      const mkldnn::normalization_flags& flags) {
  key->append(std::to_string(static_cast<int>(flags)));
}

421 422
inline void AppendKey(std::string* key, const std::string& str) {
  key->append(str);
A
Adam 已提交
423 424
}

425
inline void AppendKey(std::string* key, const char* str) { key->append(str); }
A
Adam 已提交
426

A
Adam 已提交
427 428
template <typename T>
inline void AppendKey(std::string* key, const std::vector<T>& dims) {
429
  for (size_t i = 0; i < dims.size(); i++) {
A
Adam 已提交
430 431 432 433
    AppendKey(key, std::to_string(dims[i]));
  }
}

434 435 436 437 438 439 440
// If MKLDNN build and CPU place then register suffix in DeviceContext
inline void AttachPointerHashToMKLDNNKey(void* ptr,
                                         const platform::Place& place) {
  if (platform::is_cpu_place(place)) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    platform::MKLDNNDeviceContext* dev_ctx =
        (platform::MKLDNNDeviceContext*)pool.Get(place);
441 442 443 444 445
    dev_ctx->SetKeySuffix("E" +
                          std::to_string(reinterpret_cast<uintptr_t>(ptr)));
    // When NaiveExecutor/Executor is used no info on thread id is needed in a
    // key
    dev_ctx->DisableThreadInfoInKey();
446 447 448
  }
}

449
template <typename... ArgTypes>
450 451
inline std::string CreateKey(const platform::MKLDNNDeviceContext& dev_ctx,
                             ArgTypes&&... args) {
452
  std::string key;
453
  key.reserve(64);
454
  using expand_type = int[];
455
  expand_type{0, (AppendKey(&key, std::forward<ArgTypes>(args)), 0)...};
456
  key += dev_ctx.GetKeySuffix();
457 458 459
  return key;
}

460 461 462 463 464 465 466 467 468
inline std::string ExtendKeyWithThreadInfoIfNeeded(
    const platform::MKLDNNDeviceContext& dev_ctx, const std::string& key) {
  return ((dev_ctx.IsThreadIdUsedInKey() == true) &&
          (platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id() ==
           platform::MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_Default))
             ? key + "-t:" + ThreadIDasStr()
             : key;
}

A
Adam 已提交
469 470
inline std::vector<std::vector<int64_t>> ToMkldnnPadding(
    const std::vector<int64_t>& paddings) {
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
  if (paddings.size() == 6) {
    int padding_front = paddings[0];
    int padding_back = paddings[1];
    int padding_top = paddings[2];
    int padding_bottom = paddings[3];
    int padding_left = paddings[4];
    int padding_right = paddings[5];

    return {{padding_front, padding_top, padding_left},
            {padding_back, padding_bottom, padding_right}};
  } else {
    int padding_top = paddings[0];
    int padding_bottom = paddings[1];
    int padding_left = paddings[2];
    int padding_right = paddings[3];

    return {{padding_top, padding_left}, {padding_bottom, padding_right}};
  }
}

491 492 493 494 495
inline bool HasOpINT8DataType(const paddle::framework::OpDesc* op) {
  return (op->GetAttrIfExists<std::string>("mkldnn_data_type") == "int8" ||
          op->GetAttrIfExists<bool>("use_quantizer"));
}

496 497 498 499 500 501 502
inline bool HasOpBFLOAT16DataType(const paddle::framework::OpDesc* op) {
  return op->GetAttrIfExists<std::string>("mkldnn_data_type") == "bfloat16";
}

inline bool HasOpFLOAT32DataType(const paddle::framework::OpDesc* op) {
  return op->GetAttrIfExists<std::string>("mkldnn_data_type") == "float32";
}
A
Adam 已提交
503 504
enum class RNNReorderType { PP_NTC, PP_TNC, NTC_PP, TNC_PP };

T
tensor-tang 已提交
505 506
}  // namespace platform
}  // namespace paddle