trainer.py 43.2 KB
Newer Older
H
Helin Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import contextlib
16
import os
T
tangwei12 已提交
17 18 19
import errno
import shutil
import time
20

Y
Yu Yang 已提交
21
import core
22

Y
Yu Yang 已提交
23
import data_feeder
24 25
import executor
import framework
J
Jeff Wang 已提交
26
import io
Y
Yu Yang 已提交
27 28
# optimizer is same as the parameter of Trainer.__init__. Rename it to opt_module
import optimizer as opt_module
29
import parallel_executor
Y
Yancey 已提交
30
from transpiler import distribute_transpiler
Y
Yu Yang 已提交
31

H
Helin Wang 已提交
32
__all__ = [
33 34
    'Trainer', 'BeginEpochEvent', 'EndEpochEvent', 'BeginStepEvent',
    'EndStepEvent', 'CheckpointConfig'
H
Helin Wang 已提交
35 36 37
]


Y
Yu Yang 已提交
38
class BeginEpochEvent(object):
Y
yuyang18 已提交
39 40 41 42 43 44 45
    """
    The begin of a training epoch.

    Args:
        epoch_id(int): The current epoch ID.
    """

Y
Yu Yang 已提交
46 47 48 49 50
    def __init__(self, epoch_id):
        self.epoch = epoch_id


class EndEpochEvent(object):
Y
yuyang18 已提交
51 52 53 54 55 56 57
    """
    The end of a training epoch.

    Args:
        epoch_id(int): The current epoch ID.
    """

Y
Yu Yang 已提交
58 59
    def __init__(self, epoch_id):
        self.epoch = epoch_id
H
Helin Wang 已提交
60

Y
Yu Yang 已提交
61 62

class BeginStepEvent(object):
Y
yuyang18 已提交
63 64 65 66 67 68 69 70
    """
    The begin of a training epoch.

    Args:
        epoch_id(int): The current epoch ID.
        step_id(int): The current step ID.
    """

Y
Yu Yang 已提交
71 72 73
    def __init__(self, epoch_id, step_id):
        self.epoch = epoch_id
        self.step = step_id
Y
yuyang18 已提交
74
        self.fetch_metrics = True
Y
yuyang18 已提交
75 76 77 78
        """
        If fetch_metrics is true, the metrics will be fetched at the 
        EndStepEvent. Default is True.
        """
Y
Yu Yang 已提交
79 80 81


class EndStepEvent(object):
Y
yuyang18 已提交
82 83 84 85 86 87 88
    """
    The end of a training step.

    Args:
        epoch_id(int): The current epoch ID.
        step_id(int): The current step ID.
        metrics(list): A list of fetched tensor. The order of this list is same
Y
yuyang18 已提交
89
            as the :code:`train_func` returns.
Y
yuyang18 已提交
90 91
    """

Y
yuyang18 已提交
92
    def __init__(self, epoch_id, step_id, metrics):
Y
Yu Yang 已提交
93 94
        self.epoch = epoch_id
        self.step = step_id
Y
yuyang18 已提交
95
        self.metrics = metrics
H
Helin Wang 已提交
96 97


98
class CheckpointConfig(object):
Y
yuyang18 已提交
99
    """
T
tangwei12 已提交
100
    Parameter object for :code:`save_checkpoint` and
Y
yuyang18 已提交
101 102 103 104
    :code:`fluid.Trainer`. Used to configuration how to save checkpoint.

    Args:
        checkpoint_dir(str): Directory path to save check point. Default is the
Y
yuyang18 已提交
105
            current directory.
Y
yuyang18 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119

        max_num_checkpoints(int): The max number of local check points.
        epoch_interval(int): Every number of epoch to save check point.
        step_interval(int): Every number of step to save check point.

    Examples:
        >>> config = fluid.CheckpointConfig("./checkpoints")
        >>> trainer = fluid.Trainer(train_func=train_program,
        >>>                         place=place,
        >>>                         optimizer_func=optimizer_func,
        >>>                         checkpoint_config=config)
        >>> trainer.train(...)
    """

120 121 122
    def __init__(self,
                 checkpoint_dir=None,
                 max_num_checkpoints=3,
T
tangwei12 已提交
123 124 125
                 epoch_interval=1,
                 step_interval=10):

126 127
        assert epoch_interval >= 1
        assert step_interval >= 1
128

T
tangwei12 已提交
129 130
        self.checkpoint_dir = checkpoint_dir \
            if checkpoint_dir is not None else os.getcwd()
131 132 133
        self.max_num_checkpoints = max_num_checkpoints
        self.epoch_interval = epoch_interval
        self.step_interval = step_interval
134 135
        self.epoch_id = 0
        self.step_id = 0
T
tangwei12 已提交
136
        self.load_serial = None
T
tangwei12 已提交
137
        self.pserver_id = None
T
tangwei12 已提交
138
        self.lookup_table_name = None
T
tangwei12 已提交
139

140

Q
Qiao Longfei 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
def check_and_get_place(place):
    """
    Check the type of place or get the default place
    Args:
        place(None|core.CUDAPlace|core.CPUPlace): the place that trainer will be executed on.

    Raises:
        TypeError if the type mismatched.

    Returns:
        the original place if it is not None.
        if fluid is compiled with CUDA, returns CUDAPlace(0) by default.
        Otherwise returns CPUPlace by default.
    """
    if place is None:
        if core.is_compiled_with_cuda():
            return core.CUDAPlace(0)
        else:
            return core.CPUPlace()
    else:
        if not isinstance(place, core.CUDAPlace) and not isinstance(
                place, core.CPUPlace):
            raise TypeError("Place should be either CUDAPlace or CPUPlace")
        return place


H
Helin Wang 已提交
167
class Trainer(object):
Y
Yu Yang 已提交
168
    """
Y
yuyang18 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
    A trainer wraps MultiGPU/MultiNode training loops and can be used to train a
    simple neural network easily.

    This API takes a :code:`train_func`. A :code:`train_func` is a function that
    return loss as it first return value. The reset value can be fetched by
    EndStepEvent.metrics

    This API also takes a :code:`optimizer_func` that will return an optimizer
    instance.

    For example, to train a MLP for MNIST dataset, the sample program is

    >>> import paddle.fluid as fluid
    >>>
    >>> def mlp(image, layer_sizes=[200, 100], activation="relu", num_classes=10):
    >>>     hidden = image
    >>>     for layer_size in layer_sizes:
    >>>         hidden = fluid.layers.fc(input=hidden, size=layer_size, act=activation)
    >>>     return fluid.layers.fc(input=hidden, size=num_classes, act="softmax")
    >>>
    >>> def train_mnist_mlp():
    >>>     img = fluid.layers.data(name='image', shape=[784])
    >>>     label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    >>>     prediction = mlp(img)
    >>>     return fluid.layers.mean(fluid.layers.cross_entropy(prediction, label))
    >>>
    >>> def optimizer():
    >>>     return fluid.optimizer.Adam()
    >>>
    >>> trainer = Trainer(train_func=train_mnist_mlp,
    >>>                   optimizer_func=optimizer,
    >>>                   place=fluid.CUDAPlace(0),
    >>>                   parallel=True)
    >>>
    >>> def train_callback(event):
    >>>     if isinstance(event, fluid.EndStepEvent):
    >>>         print "Epoch ID", event.epoch, "Step ID",\
    >>>             event.step, "AvgLoss", event.metrics[0]
    >>>     elif isinstance(event, fluid.EndEpochEvent):
    >>>         trainer.save_params("./model_{0}".format(event.epoch))
    >>>
    >>> trainer.train(num_epochs=100, event_handler=train_callback)

    For more example, please see :ref:`api_guide_high_level_api`.

Y
Yu Yang 已提交
214 215

    Args:
Y
yuyang18 已提交
216 217
        train_func(callable): A function which will return loss. The loss must be
            a scalar tensor.
218
        optimizer_func(callable): A function that returns an Optimizer object.
Y
yuyang18 已提交
219 220 221 222 223 224
        place(CUDAPlace|CPUPlace): The device place of this trainer. If
            :code:`parallel=True,` all CUDA Places will be used if :code:`place`
            is a :code:`CUDAPlace`.
        parallel(bool): True if use multiple devices.
        checkpoint_config(CheckpointConfig): Configuration about how to save
            checkpoints.
Y
Yu Yang 已提交
225 226
    """

Q
Qiao Longfei 已提交
227 228
    def __init__(self,
                 train_func,
229
                 optimizer_func,
T
tangwei12 已提交
230
                 param_path=None,
Y
yuyang18 已提交
231
                 place=None,
232 233
                 parallel=False,
                 checkpoint_config=None):
234
        self.__stop = False
Y
yuyang18 已提交
235
        self.parallel = parallel
Q
Qiao Longfei 已提交
236

237 238
        # config for checkpoint
        # only chief worker will save variables
T
tangwei12 已提交
239
        self.trainer_id = 0
T
tangwei12 已提交
240 241 242
        self.checkpoint_cfg = checkpoint_config
        if self.checkpoint_cfg:
            assert isinstance(self.checkpoint_cfg, CheckpointConfig)
T
tangwei12 已提交
243
            serial = _get_latest_checkpoint_serial(
T
tangwei12 已提交
244 245
                self.checkpoint_cfg.checkpoint_dir)
            self.checkpoint_cfg.load_serial = serial if serial >= 0 else None
246

H
Helin Wang 已提交
247
        self.scope = core.Scope()
Y
Yu Yang 已提交
248

Y
yuyang18 已提交
249 250 251 252
        # 1. we need to generate a framework.Program by calling
        # program_func. Reference: fluid.program_guard in
        # test_word2vec.py

Y
Yu Yang 已提交
253 254 255 256
        self.startup_program = framework.Program()
        self.train_program = framework.Program()

        with framework.program_guard(self.train_program, self.startup_program):
Q
Qiao Longfei 已提交
257
            program_func_outs = train_func()
Y
yuyang18 已提交
258
            self.train_func_outputs = program_func_outs if isinstance(
F
fengjiayi 已提交
259
                program_func_outs, list) else [program_func_outs]
260
            self.test_program = self.train_program.clone(for_test=True)
261

262
            # The first element of program_func_outs is loss.
263 264 265
            loss = self.train_func_outputs[0]

            optimizer = optimizer_func()
Y
Yu Yang 已提交
266 267 268
            if not isinstance(optimizer, opt_module.Optimizer):
                raise TypeError(
                    "The optimizer should be an instance of Optimizer")
269
            optimize_ops, params_grads = optimizer.minimize(loss)
Y
Yu Yang 已提交
270

Q
Qiao Longfei 已提交
271
        self.place = check_and_get_place(place)
H
Helin Wang 已提交
272

Q
Qiao Longfei 已提交
273
        self._dist_transpile_if_necessary(optimize_ops, params_grads)
274

H
Helin Wang 已提交
275 276
        # 2. move the default_main_program to self.program and run the
        # default_startup program on an empty core.Scope()
Y
Yu Yang 已提交
277
        # Run startup program
278 279 280
        with self._prog_and_scope_guard():
            exe = executor.Executor(place)
            exe.run(self.startup_program)
H
Helin Wang 已提交
281

T
bug fix  
tangwei12 已提交
282
        if self.checkpoint_cfg and self.checkpoint_cfg.load_serial is not None:
T
tangwei12 已提交
283
            self._load_checkpoint()
T
tangwei12 已提交
284 285

        if param_path and os.path.isdir(param_path):
T
tangwei12 已提交
286
            # load params from param_path into scope
T
tangwei12 已提交
287 288 289 290
            io.load_persistables(
                executor=exe,
                dirname=param_path,
                main_program=self.startup_program)
T
tangwei12 已提交
291

292 293 294 295 296 297 298 299 300 301 302 303
    def _transpile_nccl2_dist(self):
        # PADDLE_TRAINER_IPS
        if "PADDLE_TRAINER_IPS" not in os.environ:
            self.nccl_id_var = None
        else:
            self.trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
            port = os.getenv("PADDLE_PSERVER_PORT")
            worker_ips = os.getenv("PADDLE_TRAINER_IPS")
            worker_endpoints = []
            for ip in worker_ips.split(","):
                worker_endpoints.append(':'.join([ip, port]))
            self.num_trainers = len(worker_endpoints)
Y
yi.wu 已提交
304
            current_endpoint = os.getenv("PADDLE_CURRENT_IP") + ":" + port
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
            worker_endpoints.remove(current_endpoint)
            # TODO(wuyi): use self.nccl_id_var, self.num_trainers and self.trainer_id
            # in ParallelExecutor to start
            # distributed training using NCCL2
            self.nccl_id_var = self.startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            self.startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": self.nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": self.trainer_id
                })

Q
Qiao Longfei 已提交
321
    def _dist_transpile_if_necessary(self, optimize_ops, params_grads):
322 323 324 325
        self._transpile_nccl2_dist()
        if self.nccl_id_var != None:
            return

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
        if "PADDLE_TRAINING_ROLE" not in os.environ:
            return

        # the port of all pservers, needed by both trainer and pserver
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        # comma separated ips of all pservers, needed by trainer and
        # pserver
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)
        # total number of workers/trainers in the job, needed by
        # trainer and pserver
        trainers = int(os.getenv("PADDLE_TRAINERS"))
        # the IP of the local machine, needed by pserver only
        current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
        # the unique trainer id, starting from 0, needed by trainer
        # only
T
bug fix  
tangwei12 已提交
345
        self.trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
T
tangwei12 已提交
346

347 348 349 350
        # the role, should be either PSERVER or TRAINER
        training_role = os.getenv("PADDLE_TRAINING_ROLE")
        with self._prog_and_scope_guard():
            t = distribute_transpiler.DistributeTranspiler()
S
seiriosPlus 已提交
351
            t.transpile(self.trainer_id, pservers=pserver_endpoints, trainers=trainers)
352
            if training_role == "PSERVER":
T
tangwei12 已提交
353
                if self.checkpoint_cfg:
T
tangwei12 已提交
354 355 356 357
                    pserver_id = eplist.index(current_endpoint)
                    self.checkpoint_cfg.pserver_id = pserver_id
                    if t.has_distributed_lookup_table:
                        self.checkpoint_cfg.lookup_table_name = t.table_name
T
tangwei12 已提交
358

359 360 361 362 363 364 365 366 367
                self.train_program = t.get_pserver_program(current_endpoint)
                self.startup_program = t.get_startup_program(current_endpoint,
                                                             self.train_program)
            elif training_role == "TRAINER":
                self.train_program = t.get_trainer_program()
            else:
                raise ValueError(
                    'TRAINING_ROLE environment variable must be either TRAINER or PSERVER'
                )
H
Helin Wang 已提交
368

369 370 371 372 373 374
    def stop(self):
        """
        stop training
        """
        self.__stop = True

Y
yuyang18 已提交
375
    def train(self, num_epochs, event_handler, reader=None, feed_order=None):
Y
Yu Yang 已提交
376
        """
Y
yuyang18 已提交
377
        Start the train loop to train the model.
Y
Yu Yang 已提交
378 379

        Args:
Y
yuyang18 已提交
380 381 382
            num_epochs(int): The number of epoch. An epoch will process all data in reader
            event_handler(callable): The event handler. A function with type (ev:Event)->void
            reader(callable): A reader creator object. See also
Y
yuyang18 已提交
383
                :ref:`api_guide_python_reader` .
Y
yuyang18 已提交
384
            feed_order(list): Feeding order of reader. None will following the defining
Y
Yu Yang 已提交
385 386 387
                order in program

        Returns:
Y
yuyang18 已提交
388
            None
Y
Yu Yang 已提交
389
        """
390 391 392 393 394 395
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "")
        if training_role == "PSERVER":
            with self._prog_and_scope_guard():
                exe = executor.Executor(self.place)
                exe.run()
                return
Y
yuyang18 已提交
396 397 398 399 400 401
        if self.parallel:
            self._train_by_parallel_executor(num_epochs, event_handler, reader,
                                             feed_order)
        else:
            self._train_by_executor(num_epochs, event_handler, reader,
                                    feed_order)
H
Helin Wang 已提交
402

403
    def test(self, reader, feed_order):
F
fengjiayi 已提交
404 405 406 407
        """
        Test the model on given test data

        Args:
Y
yuyang18 已提交
408 409 410
            reader(callable): The reader that yields test data.
            feed_order(list): Feeding order of reader. None will following the
                defining order in program
F
fengjiayi 已提交
411 412
        """

Y
yuyang18 已提交
413 414
        return self._test_by_executor(reader, feed_order,
                                      self.train_func_outputs)
Y
Yu Yang 已提交
415

H
Helin Wang 已提交
416
    def save_params(self, param_path):
Y
yuyang18 已提交
417
        """
Y
yuyang18 已提交
418 419
        Save all parameters into :code:`param_path`.

Y
yuyang18 已提交
420
        Args:
Y
yuyang18 已提交
421
            param_path(str): The path to save parameters.
Y
yuyang18 已提交
422 423 424 425

        Returns:
            None
        """
426 427 428
        with self._prog_and_scope_guard():
            exe = executor.Executor(self.place)
            io.save_persistables(exe, dirname=param_path)
Y
Yu Yang 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

    @contextlib.contextmanager
    def _prog_and_scope_guard(self):
        with framework.program_guard(
                main_program=self.train_program,
                startup_program=self.startup_program):
            with executor.scope_guard(self.scope):
                yield

    def _train_by_executor(self, num_epochs, event_handler, reader, feed_order):
        """
        Train by Executor and single device.

        Args:
            num_epochs:
            event_handler:
            reader:
            feed_order:

        Returns:

        """
        with self._prog_and_scope_guard():
F
fengjiayi 已提交
452
            feed_var_list = build_feed_var_list(self.train_program, feed_order)
Y
Yu Yang 已提交
453 454
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
F
fengjiayi 已提交
455
            exe = executor.Executor(self.place)
Y
yuyang18 已提交
456 457 458 459
            reader = feeder.decorate_reader(reader, multi_devices=False)
            self._train_by_any_executor(event_handler, exe, num_epochs, reader)

    def _train_by_any_executor(self, event_handler, exe, num_epochs, reader):
T
tangwei12 已提交
460
        if self.checkpoint_cfg:
T
bug fix  
tangwei12 已提交
461 462
            epochs = [
                epoch_id for epoch_id in range(num_epochs)
T
tangwei12 已提交
463
                if epoch_id >= self.checkpoint_cfg.epoch_id
T
bug fix  
tangwei12 已提交
464 465 466 467
            ]
        else:
            epochs = [epoch_id for epoch_id in range(num_epochs)]

T
tangwei12 已提交
468
        for epoch_id in epochs:
Y
yuyang18 已提交
469 470
            event_handler(BeginEpochEvent(epoch_id))
            for step_id, data in enumerate(reader()):
471
                if self.__stop:
T
bug fix  
tangwei12 已提交
472 473
                    if self.checkpoint_cfg:
                        self._clean_checkpoint()
474
                    return
T
tangwei12 已提交
475

T
tangwei12 已提交
476 477
                if self.checkpoint_cfg and self.checkpoint_cfg.load_serial \
                    and self.checkpoint_cfg.step_id >= step_id and self.checkpoint_cfg.epoch_id == epoch_id:
T
tangwei12 已提交
478 479
                    continue

Y
yuyang18 已提交
480 481 482 483 484 485 486 487 488 489
                begin_event = BeginStepEvent(epoch_id, step_id)
                event_handler(begin_event)
                if begin_event.fetch_metrics:
                    metrics = exe.run(feed=data,
                                      fetch_list=[
                                          var.name
                                          for var in self.train_func_outputs
                                      ])
                else:
                    metrics = exe.run(feed=data, fetch_list=[])
T
tangwei12 已提交
490

T
tangwei12 已提交
491 492
                if self.checkpoint_cfg:
                    self._save_checkpoint(epoch_id, step_id)
T
tangwei12 已提交
493
                event_handler(EndStepEvent(epoch_id, step_id, metrics))
Y
yuyang18 已提交
494
            event_handler(EndEpochEvent(epoch_id))
T
tangwei12 已提交
495 496
        if self.checkpoint_cfg:
            self._clean_checkpoint()
F
fengjiayi 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514

    def _test_by_executor(self, reader, feed_order, fetch_list):
        with executor.scope_guard(self.scope):
            feed_var_list = build_feed_var_list(self.test_program, feed_order)
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
            exe = executor.Executor(self.place)
            accumulated = len(fetch_list) * [0]
            count = 0
            for data in reader():
                outs = exe.run(program=self.test_program,
                               feed=feeder.feed(data),
                               fetch_list=fetch_list)
                accumulated = [x[0] + x[1][0] for x in zip(accumulated, outs)]
                count += 1

            return [x / count for x in accumulated]

Y
yuyang18 已提交
515 516 517 518 519 520 521 522
    def _train_by_parallel_executor(self, num_epochs, event_handler, reader,
                                    feed_order):
        with self._prog_and_scope_guard():
            pe = self._get_or_create_parallel_executor()
            feed_var_list = build_feed_var_list(self.train_program, feed_order)
            feeder = data_feeder.DataFeeder(
                feed_list=feed_var_list, place=self.place)
            reader = feeder.decorate_reader(reader, multi_devices=True)
523
            self._train_by_any_executor(event_handler, pe, num_epochs, reader)
Y
yuyang18 已提交
524 525 526 527 528 529 530 531 532 533 534

    def _get_parallel_executor(self):
        return getattr(self, 'parallel_executor', None)

    def _get_or_create_parallel_executor(self):
        if self._get_parallel_executor() is None:
            self.parallel_executor = parallel_executor.ParallelExecutor(
                use_cuda=isinstance(self.place, core.CUDAPlace),
                loss_name=self.train_func_outputs[0].name)
        return self._get_parallel_executor()

T
tangwei12 已提交
535
    def _clean_checkpoint(self):
T
tangwei12 已提交
536
        assert self.checkpoint_cfg
T
tangwei12 已提交
537
        clean_checkpoint(checkpoint_dir=self.checkpoint_cfg.checkpoint_dir)
T
tangwei12 已提交
538

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
    def _get_checkpoint_load_args(self):
        """
        epoch_id and step_id are runtime arguments, they are not variables, will load them independently.
        """
        return ["epoch_id", "step_id"]

    def _get_checkpoint_save_args(self, epoch_id, step_id):
        """
        epoch_id and step_id are runtime arguments, they are not variables, will save them independently.
        """
        trainer_args = {}
        trainer_args["epoch_id"] = epoch_id
        trainer_args["step_id"] = step_id
        return trainer_args

T
tangwei12 已提交
554
    def _save_checkpoint(self, epoch_id, step_id):
T
tangwei12 已提交
555
        assert self.checkpoint_cfg
T
tangwei12 已提交
556

T
tangwei12 已提交
557 558
        if epoch_id % self.checkpoint_cfg.epoch_interval == 0 \
            and step_id % self.checkpoint_cfg.step_interval == 0:
T
tangwei12 已提交
559
            exe = executor.Executor(self.place)
T
tangwei12 已提交
560
            save_checkpoint(
T
tangwei12 已提交
561
                executor=exe,
T
tangwei12 已提交
562
                checkpoint_dir=self.checkpoint_cfg.checkpoint_dir,
T
tangwei12 已提交
563
                trainer_id=self.trainer_id,
564
                trainer_args=self._get_checkpoint_save_args(epoch_id, step_id),
T
tangwei12 已提交
565
                main_program=self.train_program,
T
tangwei12 已提交
566
                max_num_checkpoints=self.checkpoint_cfg.max_num_checkpoints)
T
tangwei12 已提交
567

T
tangwei12 已提交
568 569 570
    def _load_checkpoint(self):
        with self._prog_and_scope_guard():
            exe = executor.Executor(self.place)
T
tangwei12 已提交
571
            load_checkpoint(
T
tangwei12 已提交
572 573 574 575 576 577
                executor=exe,
                checkpoint_dir=self.checkpoint_cfg.checkpoint_dir,
                main_program=self.startup_program)

            if not self.checkpoint_cfg.pserver_id:
                load_trainer_args = self._get_checkpoint_load_args()
T
tangwei12 已提交
578
                trainer_args = load_checkpoint(
T
tangwei12 已提交
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
                    executor=exe,
                    checkpoint_dir=self.checkpoint_cfg.checkpoint_dir,
                    main_program=self.startup_program,
                    role_id=self.trainer_id,
                    is_trainer=True,
                    load_trainer_args=load_trainer_args)

                if len(trainer_args) != 2:
                    raise ValueError(
                        "the return trainer_args length do not equal _get_checkpoint_load_args"
                    )
                self.checkpoint_cfg.epoch_id = int(trainer_args[0])
                self.checkpoint_cfg.step_id = int(trainer_args[1])
            else:
                if self.checkpoint_cfg.lookup_table_name:
T
tangwei12 已提交
594
                    load_checkpoint(
T
tangwei12 已提交
595 596 597 598 599 600 601 602
                        executor=exe,
                        checkpoint_dir=self.checkpoint_cfg.checkpoint_dir,
                        main_program=self.startup_program,
                        role_id=self.checkpoint_cfg.pserver_id,
                        is_trainer=False,
                        load_trainer_args=None,
                        load_lookup_table=self.checkpoint_cfg.lookup_table_name)

F
fengjiayi 已提交
603 604 605 606 607

def build_feed_var_list(program, feed_order):
    if not isinstance(program, framework.Program):
        raise TypeError("The 'program' should be an object of Program")

608
    if isinstance(feed_order, list):
F
fengjiayi 已提交
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
        feed_var_list = [
            program.global_block().var(var_name) for var_name in feed_order
        ]
    else:
        if not isinstance(feed_order, dict):
            raise TypeError(
                "The 'feed_order' should be either None, list or dict.")
        if not sorted(feed_order.values()) == range(len(feed_order)):
            raise ValueError(
                "The values of 'feed_order' should be a permutation of [0, len(feed_order))"
            )
        sorted_pair_list = sorted(feed_order.items(), key=lambda item: item[1])
        feed_var_list = [
            program.global_block().var(pair[0]) for pair in sorted_pair_list
        ]
    return feed_var_list
T
tangwei12 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231


# move Checkpoint APIs from io.py to trainer.py, make all of them are private.
SUCCESS_MARK_FILENAME = "_SUCCESS"
CHECKPOINT_PREFIX = "checkpoint"
MODEL_DIR = "__model__"
LOOKUP_TABLE_DIR = "__lookup_table__"
TRAINER_PREFIX = "trainer"
CHECKPOINT_SEPARATOR = "_"


def save_checkpoint(executor,
                    checkpoint_dir,
                    trainer_id,
                    main_program,
                    trainer_args=None,
                    max_num_checkpoints=3,
                    lookup_table=None,
                    pserver_endpoints=None):
    """
    This function filters out all checkpoint variables from the give
    main_program and then saves these variables to the `checkpoint_dir` 
    directory.

    In the training precess, we generally save a checkpoint in each
    iteration. So there might be a lot of checkpoints in the 
    `checkpoint_dir`. To avoid them taking too much disk space, the 
    `max_num_checkpoints` are introduced to limit the total number of 
    checkpoints. If the number of existing checkpints is greater than 
    the `max_num_checkpoints`, oldest ones will be scroll deleted.

    A variable is a checkpoint variable and will be saved if it meets
    all following conditions:
        1. It's persistable.
        2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
        3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".

    Args:
        executor(Executor): The executor to run for save checkpoint.
        checkpoint_dir(str): The folder where to save checkpoints.
        trainer_id(int): currect trainer id, if id is equal to 0, the trainer 
            is chief.
        trainer_args(dict|None): Current training arguments. Such as 'epoch_id' 
            and 'step_id'.
            Defaut: None
        main_program(Program): The program whose checkpoint variables will
            be saved.
        max_num_checkpoints(int): The max number of total number of existing 
            checkpoints.
            Default: 3
        lookup_table(string|None): the lookup table name, when use distribute
            lookup table, we can get lookup table name by DistributeTranspiler.
            table_name 
        pserver_endpoints(list|None): the parameter server ip:port list.  
            when use distribute lookup table, we can get pserver_endpoints by 
            distribute arguments.

    Returns:
        None

    Raises:
        ValueError: If `checkpoint_dir` is None.
        AssertionError: If `trainer_args` is not a dict.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            path = "./checkpoints"
            prog = fluid.default_main_program()
            trainer_args = {"epoch_id": 200,
                            "step_id": 20} # just an example
            table_name = "share_w"
            ps_endpoints = ["127.0.0.1:6000","127.0.0.1:6001"]

            save_checkpoint(executor=exe,
                                     checkpoint_dir=path,
                                     trainer_id=0,
                                     trainer_args=trainer_args,
                                     main_program=prog,
                                     max_num_checkpoints=3,
                                     lookup_table=table_name,
                                     pserver_endpoints = ps_endpoints)
    """
    if checkpoint_dir is None:
        raise ValueError("'checkpoint_dir' should not be None")

    if main_program is None:
        raise ValueError('main_program should not be None.')

    if trainer_args:
        assert isinstance(trainer_args, dict)

    is_chief = trainer_id == 0

    _make_chekcpoint_dirs(checkpoint_dir)
    serial = _get_latest_checkpoint_serial(checkpoint_dir) + 1
    cur_dir = _get_serial_dir(checkpoint_dir, serial)

    _save_trainer_args(cur_dir, trainer_id, trainer_args)

    if is_chief:
        _save_persist_vars_without_grad(executor, cur_dir, main_program)

    if is_chief and lookup_table and pserver_endpoints:
        _save_pserver_vars_by_notify(executor, cur_dir, lookup_table,
                                     pserver_endpoints)

    _scroll_delete(checkpoint_dir, max_num_checkpoints)


def load_checkpoint(executor,
                    checkpoint_dir,
                    main_program,
                    role_id=0,
                    is_trainer=True,
                    load_trainer_args=None,
                    load_lookup_table=None):
    """
    This function filters out all checkpoint variables from the give
    main_program and then try to load these variables from the
    `checkpoint_dir` directory.

    In the training precess, we generally save a checkpoint in each
    iteration. So there are more than one checkpoint in the 
    `checkpoint_dir` (each checkpoint has its own sub folder), use 
    `serial` to specify which serial of checkpoint you would like to
    load.

    A variable is a checkpoint variable and will be loaded if it meets
    all following conditions:
        1. It's persistable.
        2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
        3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".

    Args:
        executor(Executor): The executor to run for loading checkpoint.
        checkpoint_dir(str): The folder where all checkpoints are.
        serial(int): The serial of checkpoint you would like to load.
        main_program(Program): The program whose checkpoint variables will
                               be loaded.
        role_id(int):  the trainer id or the parameter server id.
        is_trainer(bool): trainer is True and parameter server is False.
        load_trainer_args(list|None): list about load trainer args.
        load_lookup_table(str|None): the lookup table name

    Returns:
        None

    Raises:
        ValueError: If `checkpoint_dir` is None.
        ValueError: If `main_program` is None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            path = "./checkpoints"
            prog = fluid.default_main_program()
            load_checkpoint(executor=exe, checkpoint_dir=path,
                    serial=9, main_program=prog)

            # In this example, `load_checkpoint` function
            # will first filters out all checkpoint variables in the default
            # main program, and then try to load these variables form the
            # folder "./checkpoints/checkpoint_9/__model__".
    """

    if checkpoint_dir is None:
        raise ValueError("'checkpoint_dir' should not be None")

    serial = _get_latest_checkpoint_serial(checkpoint_dir)

    # there are nothing  need to be loaded
    if serial is None or serial < 0:
        return

    if main_program is None:
        raise ValueError('main_program should not be None.')

    if is_trainer and load_trainer_args is None:
        cur_dir = _get_serial_dir(checkpoint_dir, serial)
        _load_persist_vars_without_grad(executor, cur_dir, main_program, True)
        return

    if is_trainer and load_trainer_args:
        return _load_trainer_args(checkpoint_dir, serial, role_id,
                                  load_trainer_args)

    if not is_trainer and load_lookup_table:
        _load_lookup_table_vars(executor, checkpoint_dir, main_program, role_id,
                                load_lookup_table)


def clean_checkpoint(checkpoint_dir, delete_dir=False):
    """
    clean the checkpoint dir, when the train exits normally, 
    the trainer will call clean_checkpoint to delete checkpoint directory saved before.
    delete_dir only works when the directory is empty, otherwise, OSError is raised.  

    : param checkpoint_dir
    : param delete_dir
    """

    if checkpoint_dir is None:
        raise ValueError("'checkpoint_dir' should not be None")
    _scroll_delete(checkpoint_dir, max_num_checkpoints=0)

    if delete_dir and not os.listdir(checkpoint_dir):
        os.rmdir(checkpoint_dir)


def _load_persist_vars_without_grad(executor,
                                    dirname,
                                    program,
                                    has_model_dir=False):
    """
    This function filters out all checkpoint variables from the give
    program and then trys to load these variables from the given directory.

    A variable is a checkpoint variable if it meets all following
    conditions:
        1. It's persistable.
        2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
        3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".

    Args:
        executor(Executor): The executor to run for loading variables.
        dirname(str): The directory path.
        program(Program): The program whose checkpoint variables will
                          be loaded.
        has_model_dir(bool): if True, the function loads variables
                             from a sub directory named '__model__'.
                             Default: False

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
            _load_persist_vars_without_grad(executor=exe,
                    dirname=param_path, program=prog, has_model_dir=True)

            # In this example, `_load_persist_vars_without_grad` function
            # will first filters out all checkpoint variables in the default
            # main program, and then trys to load these variables form the
            # folder "./my_paddle_model/__model__".
    """

    if has_model_dir:
        dirname = _get_model_dir(dirname)

    io.load_vars(
        executor,
        dirname=dirname,
        main_program=program,
        predicate=_is_checkpoint_var,
        filename=None)


def _load_lookup_table_vars(executor, dirname, program, pserver_id, table_name):
    """
    The parameter server will load lookup table's local file in 
    selectedrows variable.

    Args:
        executor(Executor): The executor to run for loading persistable variables
        dirname(str): The directory path
        main_program(Program): Find the variable named table_name in main_program
        pserver_id(int): the serial number in pserver_endpoints list
        table_name(str): lookup table name

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            dirname = "./checkpoints/checkpoint_9/"
            prog = fluid.default_main_program()
            pserver_id = 1
            table_name = "share_w"
            _load_lookup_table_vars(executor=exe,
                    dirname=dirname, program=prog, pserver_id=pserver_id,
                    table_name=table_name)
    """

    for var in program.list_vars():
        if var.name == table_name:
            lookup_table_var = var
            break

    assert lookup_table_var is not None

    lookup_table_dir = os.path.join(dirname, LOOKUP_TABLE_DIR)
    table_file = table_name + CHECKPOINT_SEPARATOR + str(pserver_id)

    load_prog = framework.Program()
    load_block = load_prog.global_block()

    load_block.append_op(
        type='load',
        inputs={},
        outputs={'Out': [lookup_table_var]},
        attrs={'file_path': os.path.join(lookup_table_dir, table_file)})

    executor.run(load_prog)


def _save_persist_vars_without_grad(executor, dirname, program):
    """
    This function filters out all checkpoint variables from the give
    program and then save these variables to a sub-folder '__model__' of 
    the given directory.

    A variable is a checkpoint variable if it meets all following
    conditions:
        1. It's persistable.
        2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
        3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".

    Args:
        executor(Executor): The executor to run for saving variables.
        dirname(str): The directory path.
        program(Program): The program whose checkpoint variables will
                          be saved.

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
            _save_persist_vars_without_grad(executor=exe,
                    dirname=param_path, program=prog)

            # In this example, `_save_persist_vars_without_grad` function
            # will first filters out all checkpoint variables in the default
            # main program, and then saves these variables to the folder 
            # "./my_paddle_model/__model__".
    """
    cur_dir = _get_model_dir(dirname)
    io.save_vars(
        executor,
        dirname=cur_dir,
        main_program=program,
        vars=None,
        predicate=_is_checkpoint_var,
        filename=None)
    _write_success(cur_dir)


def _save_pserver_vars_by_notify(executor, dirname, lookup_table,
                                 ps_endpoint_list):
    """
    This function will send checkpoint notify message from Trainer 0
    to all the pservers.
    The checkpoint notify message contains lookup table name, 
    the absolute path on pserver to save lookup_table.

    Args:
        executor(Executor): The executor to run for send checkpoint notify.
        dirname(str): The folder where to save checkpoints.
        lookup_table(string): the lookup table name, when use distribute
            lookup table, we can get lookup table name by DistributeTranspiler.
            table_name 
        ps_endpoint_list(list): the parameter server ip:port list.  
            when use distribute lookup table, we can get ps_endpoint_list by 
            distribute arguments.
    Return:
        None
    
    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
            table_name = "share_w"
            ps_endpoints = ["127.0.0.1:6000","127.0.0.1:6001"]

            _save_pserver_vars_by_notify(executor=exe,
                    dirname=param_path, lookup_table=table_name, 
                    ps_endpoint_list=ps_endpoints)
    """
    cur_dir = _get_lookuptable_dir(dirname)

    checkpoint_notify_program = framework.Program()
    checkpoint_notify_block = checkpoint_notify_program.global_block()

    attrs = {}
    attrs['epmap'] = ps_endpoint_list
    attrs['dir'] = cur_dir
    attrs['lookup_table'] = lookup_table

    checkpoint_notify_block.append_op(
        type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
    executor.run(checkpoint_notify_program)


def _save_trainer_args(dirname, trainer_id, trainer_args):
    assert isinstance(trainer_args, dict)

    cur_dir = _get_trainer_dir(dirname, trainer_id)

    for name, value in trainer_args.iteritems():
        args_file = os.path.join(cur_dir, name)
        with open(args_file, 'w') as f:
            f.write(str(value))
    _write_success(cur_dir)


def _load_trainer_args(checkpoint_dir, serial, trainer_id, trainer_args):
    """
    trainer will load some args from it's independent directory, 
    such as epoch_id and step_id.

    Args:
        checkpoint_dir(str): The folder where all checkpoints are.
        serial(int): The serial of checkpoint you would like to load.
        trainer_id(int): current trainer id.
        trainer_args(list): list about load trainer args
    Return:
        None

    Examples:
        .. code-block:: python

            param_path = "./checkpoint/"
            serial = 7
            trainer_id = 2
            trainer_args = ["epoch_id", "step_id"]

            _load_trainer_args(checkpoint_dir=param_path, serial=serial,
            trainer_id=trainer_id, trainer_args=trainer_args)
    """
    assert isinstance(trainer_args, list)

    cur_dir = _get_serial_dir(checkpoint_dir, serial)
    cur_dir = _get_trainer_dir(cur_dir, trainer_id)

    ret_values = []

    for arg in trainer_args:
        cur_file = os.path.join(cur_dir, arg)
        with open(cur_file, 'r') as f:
            contents = f.read()
            ret_values.append(contents.strip())
    return ret_values


def _is_checkpoint_var(var):
    """
    the checkpoint will not save or load all the variables.
    var type is FEED_MINIBATCH/FETCH_LIST/RAW or var name ends with @GRAD are discarded.

    : param var(Variable)
    """
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.RAW:
        return False
    # @GRAD are named for gradient variables, checkpoint will not save it.
    if "@GRAD" in var.name:
        return False
    # .trainer_ are named for distribute train variables, checkpoint will not save it.
    if ".trainer_" in var.name:
        return False

    # .block is named for distribute train variables, checkpoint will not save it.
    if ".block" in var.name:
        return False

    return var.persistable


def _make_chekcpoint_dirs(dirs):
    """
    _make_chekcpoint_dirs will makdir local directory directly, when the directory is exist, it will igore it.
    """
    assert dirs is not None

    if os.path.isfile(dirs):
        raise OSError(errno.ENOTDIR, "dirs path shoule be a Directory.", dirs)

    if not os.path.isdir(dirs):
        try:
            os.makedirs(dirs)
        except OSError as err:
            if err.errno != errno.EEXIST:
                raise err


def _get_dir_serial(dirname):
    _, serial = dirname.split(CHECKPOINT_SEPARATOR)

    try:
        serial_num = int(serial)
    except ValueError:
        serial_num = -1
    return serial_num


def _get_serial_dir(dirname, serial):
    serial_folder = CHECKPOINT_PREFIX + CHECKPOINT_SEPARATOR + str(serial)
    serial_dir = os.path.join(dirname, serial_folder)
    _make_chekcpoint_dirs(serial_dir)

    return serial_dir


def _get_model_dir(dirname):
    model_dir = os.path.join(dirname, MODEL_DIR)
    _make_chekcpoint_dirs(model_dir)
    return model_dir


def _get_lookuptable_dir(dirname):
    lookuptable_dir = os.path.join(dirname, LOOKUP_TABLE_DIR)
    _make_chekcpoint_dirs(lookuptable_dir)
    return lookuptable_dir


def _get_trainer_dir(dirname, trainer_id):
    trainer_folder = TRAINER_PREFIX + CHECKPOINT_SEPARATOR + str(trainer_id)
    trainer_dir = os.path.join(dirname, trainer_folder)
    _make_chekcpoint_dirs(trainer_dir)
    return trainer_dir


def _scroll_delete(dirname, max_num_checkpoints=3):
    dirs = os.listdir(dirname)
    serial_map = {}
    for serial in dirs:
        serial_num = _get_dir_serial(serial)
        serial_map[serial_num] = serial

    if len(serial_map.keys()) <= max_num_checkpoints:
        return

    serials = serial_map.keys()
    serials.sort(reverse=True)
    serials = serials[max_num_checkpoints:]
    for serial in serials:
        cur_dir = _get_serial_dir(dirname, serial)
        try:
            shutil.rmtree(cur_dir)
        except OSError as err:
            if err.errno != errno.ENOENT:
                raise err


def _write_success(dirname):
    """
    write an empty file named "_SUCCESS" in checkpoint dir, indicate this checkpoint is correct.

    : param dirname
    """
    success_file = os.path.join(dirname, SUCCESS_MARK_FILENAME)
    with open(success_file, 'a') as f:
        now = time.ctime()
        f.write(now)


def _get_latest_checkpoint_serial(checkpoint_dir):
    """
    get the latest file in checkpoint directory, the _SUCCESS file must exist in the directory

    : param checkpoint_dir
    """
    if not checkpoint_dir:
        return -1

    def has_success(checkpoint_dir, cur_dir):
        """
        is _SUCCESS in this dir
        """

        serial = _get_dir_serial(cur_dir)
        if serial == -1 or not os.path.isdir(
                os.path.join(checkpoint_dir, cur_dir)):
            return -1

        success_path = os.path.join(
            _get_serial_dir(checkpoint_dir, serial), MODEL_DIR,
            SUCCESS_MARK_FILENAME)
        if os.path.isfile(success_path):
            return serial

    if not os.path.isdir(checkpoint_dir):
        return -1

    current_dir = -1
    dirs = os.listdir(checkpoint_dir)
    for cur_dir in dirs:
        success_num = has_success(checkpoint_dir, cur_dir)
        if success_num > current_dir:
            current_dir = success_num
    return current_dir