test_sum_op.py 24.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import os
import tempfile
17 18 19
import unittest

import gradient_checker
20
import numpy as np
21 22
from decorator_helper import prog_scope

23 24
import paddle
import paddle.fluid as fluid
T
tangwei12 已提交
25
import paddle.fluid.core as core
26 27
import paddle.inference as paddle_infer
from paddle import enable_static
T
tangwei12 已提交
28
from paddle.fluid.op import Operator
29 30 31 32 33
from paddle.fluid.tests.unittests.op_test import (
    OpTest,
    convert_float_to_uint16,
    convert_uint16_to_float,
)
34 35 36 37 38


class TestSumOp(OpTest):
    def setUp(self):
        self.op_type = "sum"
C
chengduo 已提交
39
        self.init_kernel_type()
40 41
        self.use_mkldnn = False
        self.init_kernel_type()
Z
zhupengyang 已提交
42 43 44
        x0 = np.random.random((3, 40)).astype(self.dtype)
        x1 = np.random.random((3, 40)).astype(self.dtype)
        x2 = np.random.random((3, 40)).astype(self.dtype)
45
        self.inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
46 47
        y = x0 + x1 + x2
        self.outputs = {'Out': y}
48
        self.attrs = {'use_mkldnn': self.use_mkldnn}
49

C
chengduo 已提交
50
    def init_kernel_type(self):
51
        self.dtype = np.float64
C
chengduo 已提交
52

53
    def test_check_output(self):
Q
qijun 已提交
54
        self.check_output()
55 56

    def test_check_grad(self):
Q
qijun 已提交
57
        self.check_grad(['x0'], 'Out')
58 59


60
class TestSelectedRowsSumOp(unittest.TestCase):
C
chengduo 已提交
61
    def setUp(self):
Q
qiaolongfei 已提交
62 63 64
        self.height = 10
        self.row_numel = 12
        self.rows = [0, 1, 2, 3, 4, 5, 6]
65
        self.dtype = np.float64
C
chengduo 已提交
66
        self.init_kernel_type()
Q
qiaolongfei 已提交
67

C
chengduo 已提交
68
    def check_with_place(self, place, inplace):
69 70 71 72 73 74 75 76 77 78 79 80
        self.check_input_and_optput(
            core.Scope(), place, inplace, True, True, True
        )
        self.check_input_and_optput(
            core.Scope(), place, inplace, False, True, True
        )
        self.check_input_and_optput(
            core.Scope(), place, inplace, False, False, True
        )
        self.check_input_and_optput(
            core.Scope(), place, inplace, False, False, False
        )
T
tangwei12 已提交
81

C
chengduo 已提交
82
    def init_kernel_type(self):
C
chengduo 已提交
83
        pass
C
chengduo 已提交
84

C
chengduo 已提交
85 86 87 88
    def _get_array(self, rows, row_numel):
        array = np.ones((len(rows), row_numel)).astype(self.dtype)
        for i in range(len(rows)):
            array[i] *= rows[i]
Q
qiaolongfei 已提交
89 90
        return array

91 92 93 94 95 96 97 98 99
    def check_input_and_optput(
        self,
        scope,
        place,
        inplace,
        w1_has_data=False,
        w2_has_data=False,
        w3_has_data=False,
    ):
T
tangwei12 已提交
100 101 102 103

        self.create_selected_rows(scope, place, "W1", w1_has_data)
        self.create_selected_rows(scope, place, "W2", w2_has_data)
        self.create_selected_rows(scope, place, "W3", w3_has_data)
T
tangwei12 已提交
104 105

        # create Out Variable
Q
Qiao Longfei 已提交
106 107 108 109 110
        if inplace:
            out_var_name = "W1"
        else:
            out_var_name = "Out"
        out = scope.var(out_var_name).get_selected_rows()
T
tangwei12 已提交
111 112

        # create and run sum operator
Q
Qiao Longfei 已提交
113
        sum_op = Operator("sum", X=["W1", "W2", "W3"], Out=out_var_name)
T
tangwei12 已提交
114 115
        sum_op.run(scope, place)

T
tangwei12 已提交
116
        has_data_w_num = 0
Q
qiaolongfei 已提交
117 118
        for has_data in [w1_has_data, w2_has_data, w3_has_data]:
            if has_data:
T
tangwei12 已提交
119
                has_data_w_num += 1
T
tangwei12 已提交
120

Q
qiaolongfei 已提交
121 122
        if has_data_w_num > 0:
            self.assertEqual(len(out.rows()), 7)
123 124
            np.testing.assert_array_equal(
                np.array(out.get_tensor()),
125 126
                self._get_array(self.rows, self.row_numel) * has_data_w_num,
            )
Q
qiaolongfei 已提交
127 128
        else:
            self.assertEqual(len(out.rows()), 0)
T
tangwei12 已提交
129

Q
qiaolongfei 已提交
130
    def create_selected_rows(self, scope, place, var_name, has_data):
T
tangwei12 已提交
131
        # create and initialize W Variable
Q
qiaolongfei 已提交
132 133
        if has_data:
            rows = self.rows
T
tangwei12 已提交
134 135 136 137 138
        else:
            rows = []

        var = scope.var(var_name)
        w_selected_rows = var.get_selected_rows()
Q
qiaolongfei 已提交
139
        w_selected_rows.set_height(self.height)
T
tangwei12 已提交
140
        w_selected_rows.set_rows(rows)
C
chengduo 已提交
141
        w_array = self._get_array(self.rows, self.row_numel)
T
tangwei12 已提交
142 143 144 145 146 147 148
        w_tensor = w_selected_rows.get_tensor()
        w_tensor.set(w_array, place)

        return var

    def test_w_is_selected_rows(self):
        places = [core.CPUPlace()]
Q
Qiao Longfei 已提交
149 150
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
T
tangwei12 已提交
151
        for place in places:
Q
Qiao Longfei 已提交
152 153
            for inplace in [True, False]:
                self.check_with_place(place, inplace)
T
tangwei12 已提交
154 155


156 157 158 159 160
class TestSelectedRowsSumOpInt(TestSelectedRowsSumOp):
    def init_kernel_type(self):
        self.dtype = np.int32


161 162 163
@unittest.skipIf(
    not core.supports_bfloat16(), 'place does not support BF16 evaluation'
)
164 165 166 167 168 169 170 171
class TestSelectedRowsSumBF16Op(TestSelectedRowsSumOp):
    def setUp(self):
        self.height = 10
        self.row_numel = 12
        self.rows = [0, 1, 2, 3, 4, 5, 6]
        self.dtype = np.uint16
        self.init_kernel_type()
        np.random.seed(12345)
172 173 174
        self.data = np.random.random((len(self.rows), self.row_numel)).astype(
            np.float32
        )
175 176 177 178 179 180 181

    def _get_array(self, rows, row_numel):
        if len(rows) > 0:
            return convert_float_to_uint16(self.data)
        else:
            return np.ndarray((0, row_numel), dtype=self.dtype)

182 183 184 185 186 187 188 189 190
    def check_input_and_optput(
        self,
        scope,
        place,
        inplace,
        w1_has_data=False,
        w2_has_data=False,
        w3_has_data=False,
    ):
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

        self.create_selected_rows(scope, place, "W1", w1_has_data)
        self.create_selected_rows(scope, place, "W2", w2_has_data)
        self.create_selected_rows(scope, place, "W3", w3_has_data)

        # create Out Variable
        if inplace:
            out_var_name = "W1"
        else:
            out_var_name = "Out"
        out = scope.var(out_var_name).get_selected_rows()

        # create and run sum operator
        sum_op = Operator("sum", X=["W1", "W2", "W3"], Out=out_var_name)
        sum_op.run(scope, place)

        has_data_w_num = 0
        for has_data in [w1_has_data, w2_has_data, w3_has_data]:
            if has_data:
                has_data_w_num += 1

        if has_data_w_num > 0:
            self.assertEqual(len(out.rows()), 7)
            out_bf16 = np.array(out.get_tensor())
            out_fp32 = convert_uint16_to_float(out_bf16)
216 217 218 219 220 221
            ref_fp32 = (
                convert_uint16_to_float(
                    self._get_array(self.rows, self.row_numel)
                )
                * has_data_w_num
            )
222 223 224 225 226 227 228 229 230
            np.testing.assert_allclose(out_fp32, ref_fp32, atol=0, rtol=0.95e-2)
        else:
            self.assertEqual(len(out.rows()), 0)

    def test_w_is_selected_rows(self):
        for inplace in [True, False]:
            self.check_with_place(core.CPUPlace(), inplace)


L
lidanqing 已提交
231 232 233 234 235
class TestSelectedRowsSumBF16OpBigRow(TestSelectedRowsSumBF16Op):
    def init_kernel_type(self):
        self.row_numel = 102


C
chengduo 已提交
236 237 238 239 240
class TestLoDTensorAndSelectedRowsOp(TestSelectedRowsSumOp):
    def setUp(self):
        self.height = 10
        self.row_numel = 12
        self.rows = [0, 1, 2, 2, 4, 5, 6]
241
        self.dtype = np.float64
C
chengduo 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265

    def check_with_place(self, place, inplace):
        scope = core.Scope()
        if inplace:
            self.create_lod_tensor(scope, place, "x1")
            self.create_selected_rows(scope, place, "x2", True)
            out = scope.var("x1").get_tensor()
            out_name = "x1"
        else:
            self.create_selected_rows(scope, place, "x1", True)
            self.create_lod_tensor(scope, place, "x2")
            out = scope.var("out").get_tensor()
            out_name = "out"

        # create and run sum operator
        sum_op = Operator("sum", X=["x1", "x2"], Out=out_name)
        sum_op.run(scope, place)

        result = np.ones((1, self.height)).astype(np.int32).tolist()[0]
        for ele in self.rows:
            result[ele] += 1

        out_t = np.array(out)
        self.assertEqual(out_t.shape[0], self.height)
266 267
        np.testing.assert_array_equal(
            out_t,
268 269 270
            self._get_array([i for i in range(self.height)], self.row_numel)
            * np.tile(np.array(result).reshape(self.height, 1), self.row_numel),
        )
C
chengduo 已提交
271 272 273 274

    def create_lod_tensor(self, scope, place, var_name):
        var = scope.var(var_name)
        w_tensor = var.get_tensor()
275 276 277
        w_array = self._get_array(
            [i for i in range(self.height)], self.row_numel
        )
C
chengduo 已提交
278 279 280 281
        w_tensor.set(w_array, place)
        return var


282 283 284 285
# ----------- test fp16 -----------
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
C
chengduo 已提交
286 287 288 289 290
class TestFP16SumOp(TestSumOp):
    def init_kernel_type(self):
        self.dtype = np.float16

    def test_check_output(self):
C
chengduo 已提交
291 292 293
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_output_with_place(place, atol=2e-2)
C
chengduo 已提交
294 295 296 297

    # FIXME: Because of the precision fp16, max_relative_error
    # should be 0.15 here.
    def test_check_grad(self):
C
chengduo 已提交
298 299 300
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_grad(['x0'], 'Out', max_relative_error=0.15)
C
chengduo 已提交
301 302


C
chengduo 已提交
303
def create_test_sum_fp16_class(parent):
304 305 306
    @unittest.skipIf(
        not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
C
chengduo 已提交
307 308 309
    class TestSumFp16Case(parent):
        def init_kernel_type(self):
            self.dtype = np.float16
C
chengduo 已提交
310

C
chengduo 已提交
311
        def test_w_is_selected_rows(self):
C
chengduo 已提交
312 313 314 315 316
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                for inplace in [True, False]:
                    self.check_with_place(place, inplace)

C
chengduo 已提交
317 318 319 320 321
    cls_name = "{0}_{1}".format(parent.__name__, "SumFp16Test")
    TestSumFp16Case.__name__ = cls_name
    globals()[cls_name] = TestSumFp16Case


322
# ----------- test bf16 -----------
323 324 325 326 327 328 329 330 331
class TestSumBF16Op(OpTest):
    def setUp(self):
        self.op_type = "sum"
        self.init_kernel_type()
        x0 = np.random.random((3, 40)).astype(np.float32)
        x1 = np.random.random((3, 40)).astype(np.float32)
        x2 = np.random.random((3, 40)).astype(np.float32)
        y = x0 + x1 + x2
        self.inputs = {
332 333 334 335 336
            "X": [
                ("x0", convert_float_to_uint16(x0)),
                ("x1", convert_float_to_uint16(x1)),
                ("x2", convert_float_to_uint16(x2)),
            ]
337 338 339 340 341 342 343 344 345 346 347 348 349
        }
        self.outputs = {'Out': convert_float_to_uint16(y)}

    def init_kernel_type(self):
        self.dtype = np.uint16

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['x0'], 'Out', numeric_grad_delta=0.5)


S
Steffy-zxf 已提交
350
class API_Test_Add_n(unittest.TestCase):
351 352
    def test_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
353 354 355 356 357 358
            input0 = fluid.layers.fill_constant(
                shape=[2, 3], dtype='int64', value=5
            )
            input1 = fluid.layers.fill_constant(
                shape=[2, 3], dtype='int64', value=3
            )
359 360
            expected_result = np.empty((2, 3))
            expected_result.fill(8)
S
Steffy-zxf 已提交
361
            sum_value = paddle.add_n([input0, input1])
362 363 364
            exe = fluid.Executor(fluid.CPUPlace())
            result = exe.run(fetch_list=[sum_value])

S
Steffy-zxf 已提交
365 366 367 368 369 370 371 372 373
            self.assertEqual((result == expected_result).all(), True)

        with fluid.dygraph.guard():
            input0 = paddle.ones(shape=[2, 3], dtype='float32')
            expected_result = np.empty((2, 3))
            expected_result.fill(2)
            sum_value = paddle.add_n([input0, input0])

            self.assertEqual((sum_value.numpy() == expected_result).all(), True)
374

375
    def test_dygraph_api(self):
376
        with fluid.dygraph.guard():
377 378 379 380 381 382 383 384
            input0 = paddle.ones(shape=[2, 3], dtype='float32')
            input1 = paddle.ones(shape=[2, 3], dtype='float32')
            input0.stop_gradient = False
            input1.stop_gradient = False
            expected_result = np.empty((2, 3))
            expected_result.fill(2)
            sum_value = paddle.add_n([input0, input1])
            self.assertEqual((sum_value.numpy() == expected_result).all(), True)
385

386 387 388 389 390 391 392 393 394
            expected_grad_result = np.empty((2, 3))
            expected_grad_result.fill(1)
            sum_value.backward()
            self.assertEqual(
                (input0.grad.numpy() == expected_grad_result).all(), True
            )
            self.assertEqual(
                (input1.grad.numpy() == expected_grad_result).all(), True
            )
395

W
Weilong Wu 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
    def test_add_n_and_add_and_grad(self):
        with fluid.dygraph.guard():
            np_x = np.array([[1, 2, 3], [4, 5, 6]])
            np_y = [[7, 8, 9], [10, 11, 12]]
            np_z = [[1, 1, 1], [1, 1, 1]]
            x = paddle.to_tensor(np_x, dtype='float32', stop_gradient=False)
            y = paddle.to_tensor(np_y, dtype='float32', stop_gradient=False)
            z = paddle.to_tensor(np_z, dtype='float32')

            out1 = x + z
            out2 = y + z
            out = paddle.add_n([out1, out2])

            dx, dy = paddle.grad([out], [x, y], create_graph=True)

411
            expected_out = np.array([[10.0, 12.0, 14.0], [16.0, 18.0, 20.0]])
W
Weilong Wu 已提交
412 413 414
            expected_dx = np.array([[1, 1, 1], [1, 1, 1]])
            expected_dy = np.array([[1, 1, 1], [1, 1, 1]])

415 416 417
            np.testing.assert_allclose(out, expected_out, rtol=1e-05)
            np.testing.assert_allclose(dx, expected_dx, rtol=1e-05)
            np.testing.assert_allclose(dy, expected_dy, rtol=1e-05)
W
Weilong Wu 已提交
418

419

420 421 422
class TestRaiseSumError(unittest.TestCase):
    def test_errors(self):
        def test_type():
423
            paddle.add_n([11, 22])
424 425 426 427 428 429

        self.assertRaises(TypeError, test_type)

        def test_dtype():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
            data2 = fluid.data(name="input2", shape=[10], dtype="int8")
430
            paddle.add_n([data1, data2])
431 432 433 434 435

        self.assertRaises(TypeError, test_dtype)

        def test_dtype1():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
436
            paddle.add_n(data1)
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476

        self.assertRaises(TypeError, test_dtype1)


class TestRaiseSumsError(unittest.TestCase):
    def test_errors(self):
        def test_type():
            fluid.layers.sums([11, 22])

        self.assertRaises(TypeError, test_type)

        def test_dtype():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
            data2 = fluid.data(name="input2", shape=[10], dtype="int8")
            fluid.layers.sums([data1, data2])

        self.assertRaises(TypeError, test_dtype)

        def test_dtype1():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
            fluid.layers.sums(data1)

        self.assertRaises(TypeError, test_dtype1)

        def test_out_type():
            data1 = fluid.data(name="input1", shape=[10], dtype="flaot32")
            data2 = fluid.data(name="input2", shape=[10], dtype="float32")
            fluid.layers.sums([data1, data2], out=[10])

        self.assertRaises(TypeError, test_out_type)

        def test_out_dtype():
            data1 = fluid.data(name="input1", shape=[10], dtype="flaot32")
            data2 = fluid.data(name="input2", shape=[10], dtype="float32")
            out = fluid.data(name="out", shape=[10], dtype="int8")
            fluid.layers.sums([data1, data2], out=out)

        self.assertRaises(TypeError, test_out_dtype)


L
Leo Chen 已提交
477 478 479 480
class TestSumOpError(unittest.TestCase):
    def test_errors(self):
        def test_empty_list_input():
            with fluid.dygraph.guard():
481
                fluid._legacy_C_ops.sum([])
L
Leo Chen 已提交
482 483 484

        def test_list_of_none_input():
            with fluid.dygraph.guard():
485
                fluid._legacy_C_ops.sum([None])
L
Leo Chen 已提交
486 487 488 489 490

        self.assertRaises(Exception, test_empty_list_input)
        self.assertRaises(Exception, test_list_of_none_input)


C
chengduo 已提交
491 492
create_test_sum_fp16_class(TestSelectedRowsSumOp)
create_test_sum_fp16_class(TestLoDTensorAndSelectedRowsOp)
C
chengduo 已提交
493

494 495 496 497 498 499 500

class TestReduceOPTensorAxisBase(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()
        paddle.seed(2022)
        self.temp_dir = tempfile.TemporaryDirectory()
        self.save_path = os.path.join(self.temp_dir.name, 'reduce_tensor_axis')
501 502 503 504 505
        self.place = (
            paddle.CUDAPlace(0)
            if paddle.is_compiled_with_cuda()
            else paddle.CPUPlace()
        )
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
        self.keepdim = False
        self.init_data()

    def tearDwon(self):
        self.temp_dir.cleanup()

    def init_data(self):
        self.pd_api = paddle.sum
        self.np_api = np.sum
        self.x = paddle.randn([10, 5, 9, 9], dtype='float64')
        self.np_axis = np.array((1, 2), dtype='int64')
        self.tensor_axis = paddle.to_tensor(self.np_axis, dtype='int64')

    def test_dygraph(self):
        self.x.stop_gradient = False
        pd_out = self.pd_api(self.x, self.tensor_axis)
        np_out = self.np_api(self.x.numpy(), tuple(self.np_axis))
        np.testing.assert_allclose(
524 525
            pd_out.numpy() if pd_out.size > 1 else pd_out.item(), np_out
        )
526 527 528 529 530 531 532 533 534
        pd_out.backward()
        self.assertEqual(self.x.gradient().shape, tuple(self.x.shape))

    def test_static_and_infer(self):
        paddle.enable_static()
        main_prog = paddle.static.Program()
        starup_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, starup_prog):
            # run static
535 536 537
            x = paddle.static.data(
                shape=self.x.shape, name='x', dtype='float32'
            )
538 539 540 541 542 543 544 545 546 547 548 549 550
            if isinstance(self.tensor_axis, paddle.Tensor):
                axis = paddle.assign(self.np_axis)
            else:
                axis = []
                for i, item in enumerate(self.tensor_axis):
                    if isinstance(item, int):
                        axis.append(item)
                    else:
                        axis.append(paddle.full([1], self.np_axis[i], 'int64'))

            linear = paddle.nn.Linear(x.shape[-1], 5)
            linear_out = linear(x)
            out = self.pd_api(linear_out, axis, keepdim=self.keepdim)
551

552
            sgd = paddle.optimizer.SGD(learning_rate=0.0)
553
            sgd.minimize(paddle.mean(out))
554 555
            exe = paddle.static.Executor(self.place)
            exe.run(starup_prog)
556 557 558
            static_out = exe.run(
                feed={'x': self.x.numpy().astype('float32')}, fetch_list=[out]
            )
559 560 561

            # run infer
            paddle.static.save_inference_model(self.save_path, [x], [out], exe)
562 563 564
            config = paddle_infer.Config(
                self.save_path + '.pdmodel', self.save_path + '.pdiparams'
            )
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
            if paddle.is_compiled_with_cuda():
                config.enable_use_gpu(100, 0)
            else:
                config.disable_gpu()
            predictor = paddle_infer.create_predictor(config)
            input_names = predictor.get_input_names()
            input_handle = predictor.get_input_handle(input_names[0])
            fake_input = self.x.numpy().astype('float32')
            input_handle.reshape(self.x.shape)
            input_handle.copy_from_cpu(fake_input)
            predictor.run()
            output_names = predictor.get_output_names()
            output_handle = predictor.get_output_handle(output_names[0])
            infer_out = output_handle.copy_to_cpu()
            np.testing.assert_allclose(static_out[0], infer_out)


class TestSumWithTensorAxis1(TestReduceOPTensorAxisBase):
    def init_data(self):
        self.pd_api = paddle.sum
        self.np_api = np.sum
        self.x = paddle.randn([10, 5, 9, 9], dtype='float64')
        self.np_axis = np.array([0, 1, 2], dtype='int64')
        self.tensor_axis = [
            0,
            paddle.to_tensor([1], 'int64'),
591
            paddle.to_tensor([2], 'int64'),
592 593 594
        ]


595 596 597 598 599 600 601 602 603 604
class TestAddNDoubleGradCheck(unittest.TestCase):
    def add_n_wrapper(self, x):
        return paddle.add_n(x)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
605
        data1 = paddle.static.data('data1', [3, 4, 5], dtype)
606
        data1.persistable = True
G
GGBond8488 已提交
607
        data2 = paddle.static.data('data2', [3, 4, 5], dtype)
608 609 610 611 612
        data2.persistable = True
        out = paddle.add_n([data1, data2])
        data1_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)
        data2_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)

613 614 615 616 617 618 619
        gradient_checker.double_grad_check(
            [data1, data2],
            out,
            x_init=[data1_arr, data2_arr],
            place=place,
            eps=eps,
        )
620
        gradient_checker.double_grad_check_for_dygraph(
621 622
            self.add_n_wrapper,
            [data1, data2],
623 624
            out,
            x_init=[data1_arr, data2_arr],
625 626
            place=place,
        )
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestAddNTripleGradCheck(unittest.TestCase):
    def add_n_wrapper(self, x):
        return paddle.add_n(x)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
647
        data1 = paddle.static.data('data1', [3, 4, 5], dtype)
648
        data1.persistable = True
G
GGBond8488 已提交
649
        data2 = paddle.static.data('data2', [3, 4, 5], dtype)
650 651 652 653 654
        data2.persistable = True
        out = paddle.add_n([data1, data2])
        data1_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)
        data2_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)

655 656 657 658 659 660 661
        gradient_checker.triple_grad_check(
            [data1, data2],
            out,
            x_init=[data1_arr, data2_arr],
            place=place,
            eps=eps,
        )
662
        gradient_checker.triple_grad_check_for_dygraph(
663 664
            self.add_n_wrapper,
            [data1, data2],
665 666
            out,
            x_init=[data1_arr, data2_arr],
667 668
            place=place,
        )
669 670 671 672 673 674 675 676 677 678

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


679 680 681 682 683 684 685 686 687 688
class TestSumDoubleGradCheck(unittest.TestCase):
    def sum_wrapper(self, x):
        return paddle.sum(x[0], axis=1, keepdim=True)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
689
        data = paddle.static.data('data', [2, 4], dtype)
690 691 692 693
        data.persistable = True
        out = paddle.sum(data, axis=1, keepdim=True)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

694 695 696 697 698 699
        gradient_checker.double_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.sum_wrapper, [data], out, x_init=[data_arr], place=place
        )
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestSumTripleGradCheck(unittest.TestCase):
    def sum_wrapper(self, x):
        return paddle.sum(x[0], axis=1, keepdim=True)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
720
        data = paddle.static.data('data', [2, 4], dtype)
721 722 723 724
        data.persistable = True
        out = paddle.sum(data, axis=1, keepdim=True)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

725 726 727 728 729 730
        gradient_checker.triple_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.sum_wrapper, [data], out, x_init=[data_arr], place=place
        )
731 732 733 734 735 736 737 738 739 740

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


Q
qijun 已提交
741
if __name__ == "__main__":
742
    enable_static()
743
    unittest.main()