test_sum_op.py 24.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import os
import tempfile
17 18 19
import unittest

import gradient_checker
20
import numpy as np
21 22
from decorator_helper import prog_scope

23 24
import paddle
import paddle.fluid as fluid
T
tangwei12 已提交
25
import paddle.fluid.core as core
26 27 28 29
import paddle.fluid.layers as layers
import paddle.inference as paddle_infer
from paddle import enable_static
from paddle.fluid.framework import _test_eager_guard
T
tangwei12 已提交
30
from paddle.fluid.op import Operator
31 32 33 34 35
from paddle.fluid.tests.unittests.op_test import (
    OpTest,
    convert_float_to_uint16,
    convert_uint16_to_float,
)
36 37 38 39 40


class TestSumOp(OpTest):
    def setUp(self):
        self.op_type = "sum"
C
chengduo 已提交
41
        self.init_kernel_type()
42 43
        self.use_mkldnn = False
        self.init_kernel_type()
Z
zhupengyang 已提交
44 45 46
        x0 = np.random.random((3, 40)).astype(self.dtype)
        x1 = np.random.random((3, 40)).astype(self.dtype)
        x2 = np.random.random((3, 40)).astype(self.dtype)
47
        self.inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
48 49
        y = x0 + x1 + x2
        self.outputs = {'Out': y}
50
        self.attrs = {'use_mkldnn': self.use_mkldnn}
51

C
chengduo 已提交
52
    def init_kernel_type(self):
53
        self.dtype = np.float64
C
chengduo 已提交
54

55
    def test_check_output(self):
Q
qijun 已提交
56
        self.check_output()
57 58

    def test_check_grad(self):
Q
qijun 已提交
59
        self.check_grad(['x0'], 'Out')
60 61


62
class TestSelectedRowsSumOp(unittest.TestCase):
C
chengduo 已提交
63
    def setUp(self):
Q
qiaolongfei 已提交
64 65 66
        self.height = 10
        self.row_numel = 12
        self.rows = [0, 1, 2, 3, 4, 5, 6]
67
        self.dtype = np.float64
C
chengduo 已提交
68
        self.init_kernel_type()
Q
qiaolongfei 已提交
69

C
chengduo 已提交
70
    def check_with_place(self, place, inplace):
71 72 73 74 75 76 77 78 79 80 81 82
        self.check_input_and_optput(
            core.Scope(), place, inplace, True, True, True
        )
        self.check_input_and_optput(
            core.Scope(), place, inplace, False, True, True
        )
        self.check_input_and_optput(
            core.Scope(), place, inplace, False, False, True
        )
        self.check_input_and_optput(
            core.Scope(), place, inplace, False, False, False
        )
T
tangwei12 已提交
83

C
chengduo 已提交
84
    def init_kernel_type(self):
C
chengduo 已提交
85
        pass
C
chengduo 已提交
86

C
chengduo 已提交
87 88 89 90
    def _get_array(self, rows, row_numel):
        array = np.ones((len(rows), row_numel)).astype(self.dtype)
        for i in range(len(rows)):
            array[i] *= rows[i]
Q
qiaolongfei 已提交
91 92
        return array

93 94 95 96 97 98 99 100 101
    def check_input_and_optput(
        self,
        scope,
        place,
        inplace,
        w1_has_data=False,
        w2_has_data=False,
        w3_has_data=False,
    ):
T
tangwei12 已提交
102 103 104 105

        self.create_selected_rows(scope, place, "W1", w1_has_data)
        self.create_selected_rows(scope, place, "W2", w2_has_data)
        self.create_selected_rows(scope, place, "W3", w3_has_data)
T
tangwei12 已提交
106 107

        # create Out Variable
Q
Qiao Longfei 已提交
108 109 110 111 112
        if inplace:
            out_var_name = "W1"
        else:
            out_var_name = "Out"
        out = scope.var(out_var_name).get_selected_rows()
T
tangwei12 已提交
113 114

        # create and run sum operator
Q
Qiao Longfei 已提交
115
        sum_op = Operator("sum", X=["W1", "W2", "W3"], Out=out_var_name)
T
tangwei12 已提交
116 117
        sum_op.run(scope, place)

T
tangwei12 已提交
118
        has_data_w_num = 0
Q
qiaolongfei 已提交
119 120
        for has_data in [w1_has_data, w2_has_data, w3_has_data]:
            if has_data:
T
tangwei12 已提交
121
                has_data_w_num += 1
T
tangwei12 已提交
122

Q
qiaolongfei 已提交
123 124
        if has_data_w_num > 0:
            self.assertEqual(len(out.rows()), 7)
125 126
            np.testing.assert_array_equal(
                np.array(out.get_tensor()),
127 128
                self._get_array(self.rows, self.row_numel) * has_data_w_num,
            )
Q
qiaolongfei 已提交
129 130
        else:
            self.assertEqual(len(out.rows()), 0)
T
tangwei12 已提交
131

Q
qiaolongfei 已提交
132
    def create_selected_rows(self, scope, place, var_name, has_data):
T
tangwei12 已提交
133
        # create and initialize W Variable
Q
qiaolongfei 已提交
134 135
        if has_data:
            rows = self.rows
T
tangwei12 已提交
136 137 138 139 140
        else:
            rows = []

        var = scope.var(var_name)
        w_selected_rows = var.get_selected_rows()
Q
qiaolongfei 已提交
141
        w_selected_rows.set_height(self.height)
T
tangwei12 已提交
142
        w_selected_rows.set_rows(rows)
C
chengduo 已提交
143
        w_array = self._get_array(self.rows, self.row_numel)
T
tangwei12 已提交
144 145 146 147 148 149 150
        w_tensor = w_selected_rows.get_tensor()
        w_tensor.set(w_array, place)

        return var

    def test_w_is_selected_rows(self):
        places = [core.CPUPlace()]
Q
Qiao Longfei 已提交
151 152
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
T
tangwei12 已提交
153
        for place in places:
Q
Qiao Longfei 已提交
154 155
            for inplace in [True, False]:
                self.check_with_place(place, inplace)
T
tangwei12 已提交
156 157


158 159 160 161 162
class TestSelectedRowsSumOpInt(TestSelectedRowsSumOp):
    def init_kernel_type(self):
        self.dtype = np.int32


163 164 165
@unittest.skipIf(
    not core.supports_bfloat16(), 'place does not support BF16 evaluation'
)
166 167 168 169 170 171 172 173
class TestSelectedRowsSumBF16Op(TestSelectedRowsSumOp):
    def setUp(self):
        self.height = 10
        self.row_numel = 12
        self.rows = [0, 1, 2, 3, 4, 5, 6]
        self.dtype = np.uint16
        self.init_kernel_type()
        np.random.seed(12345)
174 175 176
        self.data = np.random.random((len(self.rows), self.row_numel)).astype(
            np.float32
        )
177 178 179 180 181 182 183

    def _get_array(self, rows, row_numel):
        if len(rows) > 0:
            return convert_float_to_uint16(self.data)
        else:
            return np.ndarray((0, row_numel), dtype=self.dtype)

184 185 186 187 188 189 190 191 192
    def check_input_and_optput(
        self,
        scope,
        place,
        inplace,
        w1_has_data=False,
        w2_has_data=False,
        w3_has_data=False,
    ):
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

        self.create_selected_rows(scope, place, "W1", w1_has_data)
        self.create_selected_rows(scope, place, "W2", w2_has_data)
        self.create_selected_rows(scope, place, "W3", w3_has_data)

        # create Out Variable
        if inplace:
            out_var_name = "W1"
        else:
            out_var_name = "Out"
        out = scope.var(out_var_name).get_selected_rows()

        # create and run sum operator
        sum_op = Operator("sum", X=["W1", "W2", "W3"], Out=out_var_name)
        sum_op.run(scope, place)

        has_data_w_num = 0
        for has_data in [w1_has_data, w2_has_data, w3_has_data]:
            if has_data:
                has_data_w_num += 1

        if has_data_w_num > 0:
            self.assertEqual(len(out.rows()), 7)
            out_bf16 = np.array(out.get_tensor())
            out_fp32 = convert_uint16_to_float(out_bf16)
218 219 220 221 222 223
            ref_fp32 = (
                convert_uint16_to_float(
                    self._get_array(self.rows, self.row_numel)
                )
                * has_data_w_num
            )
224 225 226 227 228 229 230 231 232
            np.testing.assert_allclose(out_fp32, ref_fp32, atol=0, rtol=0.95e-2)
        else:
            self.assertEqual(len(out.rows()), 0)

    def test_w_is_selected_rows(self):
        for inplace in [True, False]:
            self.check_with_place(core.CPUPlace(), inplace)


L
lidanqing 已提交
233 234 235 236 237
class TestSelectedRowsSumBF16OpBigRow(TestSelectedRowsSumBF16Op):
    def init_kernel_type(self):
        self.row_numel = 102


C
chengduo 已提交
238 239 240 241 242
class TestLoDTensorAndSelectedRowsOp(TestSelectedRowsSumOp):
    def setUp(self):
        self.height = 10
        self.row_numel = 12
        self.rows = [0, 1, 2, 2, 4, 5, 6]
243
        self.dtype = np.float64
C
chengduo 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

    def check_with_place(self, place, inplace):
        scope = core.Scope()
        if inplace:
            self.create_lod_tensor(scope, place, "x1")
            self.create_selected_rows(scope, place, "x2", True)
            out = scope.var("x1").get_tensor()
            out_name = "x1"
        else:
            self.create_selected_rows(scope, place, "x1", True)
            self.create_lod_tensor(scope, place, "x2")
            out = scope.var("out").get_tensor()
            out_name = "out"

        # create and run sum operator
        sum_op = Operator("sum", X=["x1", "x2"], Out=out_name)
        sum_op.run(scope, place)

        result = np.ones((1, self.height)).astype(np.int32).tolist()[0]
        for ele in self.rows:
            result[ele] += 1

        out_t = np.array(out)
        self.assertEqual(out_t.shape[0], self.height)
268 269
        np.testing.assert_array_equal(
            out_t,
270 271 272
            self._get_array([i for i in range(self.height)], self.row_numel)
            * np.tile(np.array(result).reshape(self.height, 1), self.row_numel),
        )
C
chengduo 已提交
273 274 275 276

    def create_lod_tensor(self, scope, place, var_name):
        var = scope.var(var_name)
        w_tensor = var.get_tensor()
277 278 279
        w_array = self._get_array(
            [i for i in range(self.height)], self.row_numel
        )
C
chengduo 已提交
280 281 282 283
        w_tensor.set(w_array, place)
        return var


284 285 286 287
# ----------- test fp16 -----------
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
C
chengduo 已提交
288 289 290 291 292
class TestFP16SumOp(TestSumOp):
    def init_kernel_type(self):
        self.dtype = np.float16

    def test_check_output(self):
C
chengduo 已提交
293 294 295
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_output_with_place(place, atol=2e-2)
C
chengduo 已提交
296 297 298 299

    # FIXME: Because of the precision fp16, max_relative_error
    # should be 0.15 here.
    def test_check_grad(self):
C
chengduo 已提交
300 301 302
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_grad(['x0'], 'Out', max_relative_error=0.15)
C
chengduo 已提交
303 304


C
chengduo 已提交
305
def create_test_sum_fp16_class(parent):
306 307 308
    @unittest.skipIf(
        not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
C
chengduo 已提交
309 310 311
    class TestSumFp16Case(parent):
        def init_kernel_type(self):
            self.dtype = np.float16
C
chengduo 已提交
312

C
chengduo 已提交
313
        def test_w_is_selected_rows(self):
C
chengduo 已提交
314 315 316 317 318
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                for inplace in [True, False]:
                    self.check_with_place(place, inplace)

C
chengduo 已提交
319 320 321 322 323
    cls_name = "{0}_{1}".format(parent.__name__, "SumFp16Test")
    TestSumFp16Case.__name__ = cls_name
    globals()[cls_name] = TestSumFp16Case


324
# ----------- test bf16 -----------
325 326 327 328 329 330 331 332 333
class TestSumBF16Op(OpTest):
    def setUp(self):
        self.op_type = "sum"
        self.init_kernel_type()
        x0 = np.random.random((3, 40)).astype(np.float32)
        x1 = np.random.random((3, 40)).astype(np.float32)
        x2 = np.random.random((3, 40)).astype(np.float32)
        y = x0 + x1 + x2
        self.inputs = {
334 335 336 337 338
            "X": [
                ("x0", convert_float_to_uint16(x0)),
                ("x1", convert_float_to_uint16(x1)),
                ("x2", convert_float_to_uint16(x2)),
            ]
339 340 341 342 343 344 345 346 347 348 349 350 351
        }
        self.outputs = {'Out': convert_float_to_uint16(y)}

    def init_kernel_type(self):
        self.dtype = np.uint16

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['x0'], 'Out', numeric_grad_delta=0.5)


S
Steffy-zxf 已提交
352
class API_Test_Add_n(unittest.TestCase):
353 354
    def test_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
355 356 357 358 359 360
            input0 = fluid.layers.fill_constant(
                shape=[2, 3], dtype='int64', value=5
            )
            input1 = fluid.layers.fill_constant(
                shape=[2, 3], dtype='int64', value=3
            )
361 362
            expected_result = np.empty((2, 3))
            expected_result.fill(8)
S
Steffy-zxf 已提交
363
            sum_value = paddle.add_n([input0, input1])
364 365 366
            exe = fluid.Executor(fluid.CPUPlace())
            result = exe.run(fetch_list=[sum_value])

S
Steffy-zxf 已提交
367 368 369 370 371 372 373 374 375
            self.assertEqual((result == expected_result).all(), True)

        with fluid.dygraph.guard():
            input0 = paddle.ones(shape=[2, 3], dtype='float32')
            expected_result = np.empty((2, 3))
            expected_result.fill(2)
            sum_value = paddle.add_n([input0, input0])

            self.assertEqual((sum_value.numpy() == expected_result).all(), True)
376

377
    def test_dygraph_api(self):
378 379 380 381 382 383 384 385 386
        with fluid.dygraph.guard():
            with _test_eager_guard():
                input0 = paddle.ones(shape=[2, 3], dtype='float32')
                input1 = paddle.ones(shape=[2, 3], dtype='float32')
                input0.stop_gradient = False
                input1.stop_gradient = False
                expected_result = np.empty((2, 3))
                expected_result.fill(2)
                sum_value = paddle.add_n([input0, input1])
387 388 389
                self.assertEqual(
                    (sum_value.numpy() == expected_result).all(), True
                )
390 391 392 393 394

                expected_grad_result = np.empty((2, 3))
                expected_grad_result.fill(1)
                sum_value.backward()
                self.assertEqual(
395 396
                    (input0.grad.numpy() == expected_grad_result).all(), True
                )
397
                self.assertEqual(
398 399
                    (input1.grad.numpy() == expected_grad_result).all(), True
                )
400

W
Weilong Wu 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
    def test_add_n_and_add_and_grad(self):
        with fluid.dygraph.guard():
            np_x = np.array([[1, 2, 3], [4, 5, 6]])
            np_y = [[7, 8, 9], [10, 11, 12]]
            np_z = [[1, 1, 1], [1, 1, 1]]
            x = paddle.to_tensor(np_x, dtype='float32', stop_gradient=False)
            y = paddle.to_tensor(np_y, dtype='float32', stop_gradient=False)
            z = paddle.to_tensor(np_z, dtype='float32')

            out1 = x + z
            out2 = y + z
            out = paddle.add_n([out1, out2])

            dx, dy = paddle.grad([out], [x, y], create_graph=True)

416
            expected_out = np.array([[10.0, 12.0, 14.0], [16.0, 18.0, 20.0]])
W
Weilong Wu 已提交
417 418 419
            expected_dx = np.array([[1, 1, 1], [1, 1, 1]])
            expected_dy = np.array([[1, 1, 1], [1, 1, 1]])

420 421 422
            np.testing.assert_allclose(out, expected_out, rtol=1e-05)
            np.testing.assert_allclose(dx, expected_dx, rtol=1e-05)
            np.testing.assert_allclose(dy, expected_dy, rtol=1e-05)
W
Weilong Wu 已提交
423

424

425 426 427
class TestRaiseSumError(unittest.TestCase):
    def test_errors(self):
        def test_type():
428
            paddle.add_n([11, 22])
429 430 431 432 433 434

        self.assertRaises(TypeError, test_type)

        def test_dtype():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
            data2 = fluid.data(name="input2", shape=[10], dtype="int8")
435
            paddle.add_n([data1, data2])
436 437 438 439 440

        self.assertRaises(TypeError, test_dtype)

        def test_dtype1():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
441
            paddle.add_n(data1)
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481

        self.assertRaises(TypeError, test_dtype1)


class TestRaiseSumsError(unittest.TestCase):
    def test_errors(self):
        def test_type():
            fluid.layers.sums([11, 22])

        self.assertRaises(TypeError, test_type)

        def test_dtype():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
            data2 = fluid.data(name="input2", shape=[10], dtype="int8")
            fluid.layers.sums([data1, data2])

        self.assertRaises(TypeError, test_dtype)

        def test_dtype1():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
            fluid.layers.sums(data1)

        self.assertRaises(TypeError, test_dtype1)

        def test_out_type():
            data1 = fluid.data(name="input1", shape=[10], dtype="flaot32")
            data2 = fluid.data(name="input2", shape=[10], dtype="float32")
            fluid.layers.sums([data1, data2], out=[10])

        self.assertRaises(TypeError, test_out_type)

        def test_out_dtype():
            data1 = fluid.data(name="input1", shape=[10], dtype="flaot32")
            data2 = fluid.data(name="input2", shape=[10], dtype="float32")
            out = fluid.data(name="out", shape=[10], dtype="int8")
            fluid.layers.sums([data1, data2], out=out)

        self.assertRaises(TypeError, test_out_dtype)


L
Leo Chen 已提交
482 483 484 485
class TestSumOpError(unittest.TestCase):
    def test_errors(self):
        def test_empty_list_input():
            with fluid.dygraph.guard():
486
                fluid._legacy_C_ops.sum([])
L
Leo Chen 已提交
487 488 489

        def test_list_of_none_input():
            with fluid.dygraph.guard():
490
                fluid._legacy_C_ops.sum([None])
L
Leo Chen 已提交
491 492 493 494 495

        self.assertRaises(Exception, test_empty_list_input)
        self.assertRaises(Exception, test_list_of_none_input)


C
chengduo 已提交
496 497
create_test_sum_fp16_class(TestSelectedRowsSumOp)
create_test_sum_fp16_class(TestLoDTensorAndSelectedRowsOp)
C
chengduo 已提交
498

499 500 501 502 503 504 505

class TestReduceOPTensorAxisBase(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()
        paddle.seed(2022)
        self.temp_dir = tempfile.TemporaryDirectory()
        self.save_path = os.path.join(self.temp_dir.name, 'reduce_tensor_axis')
506 507 508 509 510
        self.place = (
            paddle.CUDAPlace(0)
            if paddle.is_compiled_with_cuda()
            else paddle.CPUPlace()
        )
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
        self.keepdim = False
        self.init_data()

    def tearDwon(self):
        self.temp_dir.cleanup()

    def init_data(self):
        self.pd_api = paddle.sum
        self.np_api = np.sum
        self.x = paddle.randn([10, 5, 9, 9], dtype='float64')
        self.np_axis = np.array((1, 2), dtype='int64')
        self.tensor_axis = paddle.to_tensor(self.np_axis, dtype='int64')

    def test_dygraph(self):
        self.x.stop_gradient = False
        pd_out = self.pd_api(self.x, self.tensor_axis)
        np_out = self.np_api(self.x.numpy(), tuple(self.np_axis))
        np.testing.assert_allclose(
529 530
            pd_out.numpy() if pd_out.size > 1 else pd_out.item(), np_out
        )
531 532 533 534 535 536 537 538 539
        pd_out.backward()
        self.assertEqual(self.x.gradient().shape, tuple(self.x.shape))

    def test_static_and_infer(self):
        paddle.enable_static()
        main_prog = paddle.static.Program()
        starup_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, starup_prog):
            # run static
540 541 542
            x = paddle.static.data(
                shape=self.x.shape, name='x', dtype='float32'
            )
543 544 545 546 547 548 549 550 551 552 553 554 555
            if isinstance(self.tensor_axis, paddle.Tensor):
                axis = paddle.assign(self.np_axis)
            else:
                axis = []
                for i, item in enumerate(self.tensor_axis):
                    if isinstance(item, int):
                        axis.append(item)
                    else:
                        axis.append(paddle.full([1], self.np_axis[i], 'int64'))

            linear = paddle.nn.Linear(x.shape[-1], 5)
            linear_out = linear(x)
            out = self.pd_api(linear_out, axis, keepdim=self.keepdim)
556

557
            sgd = paddle.optimizer.SGD(learning_rate=0.0)
558
            sgd.minimize(paddle.mean(out))
559 560
            exe = paddle.static.Executor(self.place)
            exe.run(starup_prog)
561 562 563
            static_out = exe.run(
                feed={'x': self.x.numpy().astype('float32')}, fetch_list=[out]
            )
564 565 566

            # run infer
            paddle.static.save_inference_model(self.save_path, [x], [out], exe)
567 568 569
            config = paddle_infer.Config(
                self.save_path + '.pdmodel', self.save_path + '.pdiparams'
            )
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
            if paddle.is_compiled_with_cuda():
                config.enable_use_gpu(100, 0)
            else:
                config.disable_gpu()
            predictor = paddle_infer.create_predictor(config)
            input_names = predictor.get_input_names()
            input_handle = predictor.get_input_handle(input_names[0])
            fake_input = self.x.numpy().astype('float32')
            input_handle.reshape(self.x.shape)
            input_handle.copy_from_cpu(fake_input)
            predictor.run()
            output_names = predictor.get_output_names()
            output_handle = predictor.get_output_handle(output_names[0])
            infer_out = output_handle.copy_to_cpu()
            np.testing.assert_allclose(static_out[0], infer_out)


class TestSumWithTensorAxis1(TestReduceOPTensorAxisBase):
    def init_data(self):
        self.pd_api = paddle.sum
        self.np_api = np.sum
        self.x = paddle.randn([10, 5, 9, 9], dtype='float64')
        self.np_axis = np.array([0, 1, 2], dtype='int64')
        self.tensor_axis = [
            0,
            paddle.to_tensor([1], 'int64'),
596
            paddle.to_tensor([2], 'int64'),
597 598 599
        ]


600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
class TestAddNDoubleGradCheck(unittest.TestCase):
    def add_n_wrapper(self, x):
        return paddle.add_n(x)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data1 = layers.data('data1', [3, 4, 5], False, dtype)
        data1.persistable = True
        data2 = layers.data('data2', [3, 4, 5], False, dtype)
        data2.persistable = True
        out = paddle.add_n([data1, data2])
        data1_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)
        data2_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)

618 619 620 621 622 623 624
        gradient_checker.double_grad_check(
            [data1, data2],
            out,
            x_init=[data1_arr, data2_arr],
            place=place,
            eps=eps,
        )
625 626
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.double_grad_check_for_dygraph(
627 628
            self.add_n_wrapper,
            [data1, data2],
629 630
            out,
            x_init=[data1_arr, data2_arr],
631 632
            place=place,
        )
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestAddNTripleGradCheck(unittest.TestCase):
    def add_n_wrapper(self, x):
        return paddle.add_n(x)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data1 = layers.data('data1', [3, 4, 5], False, dtype)
        data1.persistable = True
        data2 = layers.data('data2', [3, 4, 5], False, dtype)
        data2.persistable = True
        out = paddle.add_n([data1, data2])
        data1_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)
        data2_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)

661 662 663 664 665 666 667
        gradient_checker.triple_grad_check(
            [data1, data2],
            out,
            x_init=[data1_arr, data2_arr],
            place=place,
            eps=eps,
        )
668 669
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.triple_grad_check_for_dygraph(
670 671
            self.add_n_wrapper,
            [data1, data2],
672 673
            out,
            x_init=[data1_arr, data2_arr],
674 675
            place=place,
        )
676 677 678 679 680 681 682 683 684 685

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
class TestSumDoubleGradCheck(unittest.TestCase):
    def sum_wrapper(self, x):
        return paddle.sum(x[0], axis=1, keepdim=True)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [2, 4], False, dtype)
        data.persistable = True
        out = paddle.sum(data, axis=1, keepdim=True)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

701 702 703
        gradient_checker.double_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
704
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
705 706 707
        gradient_checker.double_grad_check_for_dygraph(
            self.sum_wrapper, [data], out, x_init=[data_arr], place=place
        )
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestSumTripleGradCheck(unittest.TestCase):
    def sum_wrapper(self, x):
        return paddle.sum(x[0], axis=1, keepdim=True)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [2, 4], False, dtype)
        data.persistable = True
        out = paddle.sum(data, axis=1, keepdim=True)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

733 734 735
        gradient_checker.triple_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
736
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
737 738 739
        gradient_checker.triple_grad_check_for_dygraph(
            self.sum_wrapper, [data], out, x_init=[data_arr], place=place
        )
740 741 742 743 744 745 746 747 748 749

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


Q
qijun 已提交
750
if __name__ == "__main__":
751
    enable_static()
752
    unittest.main()