test_assign_op.py 11.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import unittest
16 17 18 19 20 21

import gradient_checker
import numpy as np
import op_test
from decorator_helper import prog_scope

22
import paddle
23
import paddle.fluid as fluid
24 25 26
import paddle.fluid.core as core
from paddle.fluid import Program, program_guard
from paddle.fluid.backward import append_backward
Y
Yu Yang 已提交
27 28 29 30


class TestAssignOp(op_test.OpTest):
    def setUp(self):
C
chentianyu03 已提交
31
        self.python_api = paddle.assign
Y
Yu Yang 已提交
32
        self.op_type = "assign"
33
        x = np.random.random(size=(100, 10)).astype('float64')
Y
Yu Yang 已提交
34 35 36 37
        self.inputs = {'X': x}
        self.outputs = {'Out': x}

    def test_forward(self):
38
        paddle.enable_static()
C
chentianyu03 已提交
39
        self.check_output(check_eager=True)
40
        paddle.disable_static()
Y
Yu Yang 已提交
41 42

    def test_backward(self):
43
        paddle.enable_static()
C
chentianyu03 已提交
44
        self.check_grad(['X'], 'Out', check_eager=True)
45
        paddle.disable_static()
Y
Yu Yang 已提交
46 47


48 49
class TestAssignFP16Op(op_test.OpTest):
    def setUp(self):
C
chentianyu03 已提交
50
        self.python_api = paddle.assign
51 52 53 54 55 56
        self.op_type = "assign"
        x = np.random.random(size=(100, 10)).astype('float16')
        self.inputs = {'X': x}
        self.outputs = {'Out': x}

    def test_forward(self):
57
        paddle.enable_static()
C
chentianyu03 已提交
58
        self.check_output(check_eager=True)
59
        paddle.disable_static()
60 61

    def test_backward(self):
62
        paddle.enable_static()
C
chentianyu03 已提交
63
        self.check_grad(['X'], 'Out', check_eager=True)
64
        paddle.disable_static()
65 66


67 68
class TestAssignOpWithLoDTensorArray(unittest.TestCase):
    def test_assign_LoDTensorArray(self):
69
        paddle.enable_static()
70 71 72 73 74
        main_program = Program()
        startup_program = Program()
        with program_guard(main_program):
            x = fluid.data(name='x', shape=[100, 10], dtype='float32')
            x.stop_gradient = False
75 76 77
            y = fluid.layers.fill_constant(
                shape=[100, 10], dtype='float32', value=1
            )
78
            z = paddle.add(x=x, y=y)
79
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
80
            init_array = paddle.tensor.array_write(x=z, i=i)
81
            array = fluid.layers.assign(init_array)
82
            sums = paddle.tensor.array_read(array=init_array, i=i)
83
            mean = paddle.mean(sums)
84 85
            append_backward(mean)

86 87 88 89 90
        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
91 92 93 94
        exe = fluid.Executor(place)
        feed_x = np.random.random(size=(100, 10)).astype('float32')
        ones = np.ones((100, 10)).astype('float32')
        feed_add = feed_x + ones
95 96 97 98 99
        res = exe.run(
            main_program,
            feed={'x': feed_x},
            fetch_list=[sums.name, x.grad_name],
        )
100 101
        np.testing.assert_allclose(res[0], feed_add, rtol=1e-05)
        np.testing.assert_allclose(res[1], ones / 1000.0, rtol=1e-05)
102
        paddle.disable_static()
103 104


105
class TestAssignOpError(unittest.TestCase):
106
    def test_errors(self):
107
        paddle.enable_static()
108 109
        with program_guard(Program(), Program()):
            # The type of input must be Variable or numpy.ndarray.
110 111 112
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace()
            )
113 114
            self.assertRaises(TypeError, fluid.layers.assign, x1)
            # When the type of input is numpy.ndarray, the dtype of input must be float32, int32.
115 116
            x2 = np.array([[2.5, 2.5]], dtype='uint8')
            self.assertRaises(TypeError, fluid.layers.assign, x2)
117
        paddle.disable_static()
118 119


120 121
class TestAssignOApi(unittest.TestCase):
    def test_assign_LoDTensorArray(self):
122
        paddle.enable_static()
123 124 125 126 127
        main_program = Program()
        startup_program = Program()
        with program_guard(main_program):
            x = fluid.data(name='x', shape=[100, 10], dtype='float32')
            x.stop_gradient = False
128 129 130
            y = fluid.layers.fill_constant(
                shape=[100, 10], dtype='float32', value=1
            )
131
            z = paddle.add(x=x, y=y)
132
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
133
            init_array = paddle.tensor.array_write(x=z, i=i)
134
            array = paddle.assign(init_array)
135
            sums = paddle.tensor.array_read(array=init_array, i=i)
136
            mean = paddle.mean(sums)
137 138
            append_backward(mean)

139 140 141 142 143
        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
144 145 146 147
        exe = fluid.Executor(place)
        feed_x = np.random.random(size=(100, 10)).astype('float32')
        ones = np.ones((100, 10)).astype('float32')
        feed_add = feed_x + ones
148 149 150 151 152
        res = exe.run(
            main_program,
            feed={'x': feed_x},
            fetch_list=[sums.name, x.grad_name],
        )
153 154
        np.testing.assert_allclose(res[0], feed_add, rtol=1e-05)
        np.testing.assert_allclose(res[1], ones / 1000.0, rtol=1e-05)
155
        paddle.disable_static()
156 157 158

    def test_assign_NumpyArray(self):
        with fluid.dygraph.guard():
159
            array = np.random.random(size=(100, 10)).astype(np.bool_)
160 161
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1)
162
        np.testing.assert_allclose(result1.numpy(), array, rtol=1e-05)
163 164 165 166 167 168

    def test_assign_NumpyArray1(self):
        with fluid.dygraph.guard():
            array = np.random.random(size=(100, 10)).astype(np.float32)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1)
169
        np.testing.assert_allclose(result1.numpy(), array, rtol=1e-05)
170 171 172 173 174 175

    def test_assign_NumpyArray2(self):
        with fluid.dygraph.guard():
            array = np.random.random(size=(100, 10)).astype(np.int32)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1)
176
        np.testing.assert_allclose(result1.numpy(), array, rtol=1e-05)
177 178 179 180 181 182

    def test_assign_NumpyArray3(self):
        with fluid.dygraph.guard():
            array = np.random.random(size=(100, 10)).astype(np.int64)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1)
183
        np.testing.assert_allclose(result1.numpy(), array, rtol=1e-05)
184

185 186 187
    def test_assign_List(self):
        l = [1, 2, 3]
        result = paddle.assign(l)
188
        np.testing.assert_allclose(result.numpy(), np.array(l), rtol=1e-05)
189 190 191 192 193

    def test_assign_BasicTypes(self):
        result1 = paddle.assign(2)
        result2 = paddle.assign(3.0)
        result3 = paddle.assign(True)
194 195 196
        np.testing.assert_allclose(result1.numpy(), np.array([2]), rtol=1e-05)
        np.testing.assert_allclose(result2.numpy(), np.array([3.0]), rtol=1e-05)
        np.testing.assert_allclose(result3.numpy(), np.array([1]), rtol=1e-05)
197

198
    def test_clone(self):
C
chentianyu03 已提交
199 200
        self.python_api = paddle.clone

201 202
        x = paddle.ones([2])
        x.stop_gradient = False
姜永久 已提交
203
        x.retain_grads()
204
        clone_x = paddle.clone(x)
姜永久 已提交
205
        clone_x.retain_grads()
206 207 208 209

        y = clone_x**3
        y.backward()

210 211 212
        np.testing.assert_array_equal(x, [1, 1])
        np.testing.assert_array_equal(clone_x.grad.numpy(), [3, 3])
        np.testing.assert_array_equal(x.grad.numpy(), [3, 3])
213 214 215 216 217 218 219
        paddle.enable_static()

        with program_guard(Program(), Program()):
            x_np = np.random.randn(2, 3).astype('float32')
            x = paddle.static.data("X", shape=[2, 3])
            clone_x = paddle.clone(x)
            exe = paddle.static.Executor()
220 221 222 223 224
            y_np = exe.run(
                paddle.static.default_main_program(),
                feed={'X': x_np},
                fetch_list=[clone_x],
            )[0]
225

226
        np.testing.assert_array_equal(y_np, x_np)
227
        paddle.disable_static()
228

229 230 231

class TestAssignOpErrorApi(unittest.TestCase):
    def test_errors(self):
232
        paddle.enable_static()
233 234
        with program_guard(Program(), Program()):
            # The type of input must be Variable or numpy.ndarray.
235 236 237
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace()
            )
238 239
            self.assertRaises(TypeError, paddle.assign, x1)
            # When the type of input is numpy.ndarray, the dtype of input must be float32, int32.
240 241
            x2 = np.array([[2.5, 2.5]], dtype='uint8')
            self.assertRaises(TypeError, paddle.assign, x2)
242
        paddle.disable_static()
243

244 245 246 247 248 249
    def test_type_error(self):
        paddle.enable_static()
        with program_guard(Program(), Program()):
            x = [paddle.randn([3, 3]), paddle.randn([3, 3])]
            # not support to assign list(var)
            self.assertRaises(TypeError, paddle.assign, x)
250
        paddle.disable_static()
251

252

253 254 255 256 257 258 259 260 261 262
class TestAssignDoubleGradCheck(unittest.TestCase):
    def assign_wrapper(self, x):
        return paddle.fluid.layers.assign(x[0])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
263
        data = paddle.static.data('data', [3, 4, 5], dtype)
264 265 266 267
        data.persistable = True
        out = paddle.fluid.layers.assign(data)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

268 269 270 271 272 273
        gradient_checker.double_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.assign_wrapper, [data], out, x_init=[data_arr], place=place
        )
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestAssignTripleGradCheck(unittest.TestCase):
    def assign_wrapper(self, x):
        return paddle.fluid.layers.assign(x[0])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
294
        data = paddle.static.data('data', [3, 4, 5], dtype)
295 296 297 298
        data.persistable = True
        out = paddle.fluid.layers.assign(data)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

299 300 301 302 303 304
        gradient_checker.triple_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.assign_wrapper, [data], out, x_init=[data_arr], place=place
        )
305 306 307 308 309 310 311 312 313 314

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


Y
Yu Yang 已提交
315 316
if __name__ == '__main__':
    unittest.main()