test_assign_op.py 12.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import unittest
16 17 18 19 20 21

import gradient_checker
import numpy as np
import op_test
from decorator_helper import prog_scope

22
import paddle
23
import paddle.fluid as fluid
24
import paddle.fluid.core as core
25
import paddle.fluid.layers as layers
26 27
from paddle.fluid import Program, program_guard
from paddle.fluid.backward import append_backward
Y
Yu Yang 已提交
28 29 30 31


class TestAssignOp(op_test.OpTest):
    def setUp(self):
C
chentianyu03 已提交
32
        self.python_api = paddle.assign
Y
Yu Yang 已提交
33
        self.op_type = "assign"
34
        x = np.random.random(size=(100, 10)).astype('float64')
Y
Yu Yang 已提交
35 36 37 38
        self.inputs = {'X': x}
        self.outputs = {'Out': x}

    def test_forward(self):
39
        paddle.enable_static()
40
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
C
chentianyu03 已提交
41
        self.check_output(check_eager=True)
42
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
43
        paddle.disable_static()
Y
Yu Yang 已提交
44 45

    def test_backward(self):
46
        paddle.enable_static()
47
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
C
chentianyu03 已提交
48
        self.check_grad(['X'], 'Out', check_eager=True)
49
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
50
        paddle.disable_static()
Y
Yu Yang 已提交
51 52


53 54
class TestAssignFP16Op(op_test.OpTest):
    def setUp(self):
C
chentianyu03 已提交
55
        self.python_api = paddle.assign
56 57 58 59 60 61
        self.op_type = "assign"
        x = np.random.random(size=(100, 10)).astype('float16')
        self.inputs = {'X': x}
        self.outputs = {'Out': x}

    def test_forward(self):
62
        paddle.enable_static()
63
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
C
chentianyu03 已提交
64
        self.check_output(check_eager=True)
65
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
66
        paddle.disable_static()
67 68

    def test_backward(self):
69
        paddle.enable_static()
70
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
C
chentianyu03 已提交
71
        self.check_grad(['X'], 'Out', check_eager=True)
72
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
73
        paddle.disable_static()
74 75


76 77
class TestAssignOpWithLoDTensorArray(unittest.TestCase):
    def test_assign_LoDTensorArray(self):
78
        paddle.enable_static()
79
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
80 81 82 83 84
        main_program = Program()
        startup_program = Program()
        with program_guard(main_program):
            x = fluid.data(name='x', shape=[100, 10], dtype='float32')
            x.stop_gradient = False
85 86 87
            y = fluid.layers.fill_constant(
                shape=[100, 10], dtype='float32', value=1
            )
88
            z = paddle.add(x=x, y=y)
89 90 91 92
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            init_array = fluid.layers.array_write(x=z, i=i)
            array = fluid.layers.assign(init_array)
            sums = fluid.layers.array_read(array=init_array, i=i)
93
            mean = paddle.mean(sums)
94
            append_backward(mean)
95
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
96

97 98 99 100 101
        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
102 103 104 105
        exe = fluid.Executor(place)
        feed_x = np.random.random(size=(100, 10)).astype('float32')
        ones = np.ones((100, 10)).astype('float32')
        feed_add = feed_x + ones
106 107 108 109 110
        res = exe.run(
            main_program,
            feed={'x': feed_x},
            fetch_list=[sums.name, x.grad_name],
        )
111 112
        np.testing.assert_allclose(res[0], feed_add, rtol=1e-05)
        np.testing.assert_allclose(res[1], ones / 1000.0, rtol=1e-05)
113
        paddle.disable_static()
114 115


116
class TestAssignOpError(unittest.TestCase):
117
    def test_errors(self):
118
        paddle.enable_static()
119 120
        with program_guard(Program(), Program()):
            # The type of input must be Variable or numpy.ndarray.
121 122 123
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace()
            )
124 125
            self.assertRaises(TypeError, fluid.layers.assign, x1)
            # When the type of input is numpy.ndarray, the dtype of input must be float32, int32.
126 127
            x2 = np.array([[2.5, 2.5]], dtype='uint8')
            self.assertRaises(TypeError, fluid.layers.assign, x2)
128
        paddle.disable_static()
129 130


131 132
class TestAssignOApi(unittest.TestCase):
    def test_assign_LoDTensorArray(self):
133
        paddle.enable_static()
134 135 136 137 138
        main_program = Program()
        startup_program = Program()
        with program_guard(main_program):
            x = fluid.data(name='x', shape=[100, 10], dtype='float32')
            x.stop_gradient = False
139 140 141
            y = fluid.layers.fill_constant(
                shape=[100, 10], dtype='float32', value=1
            )
142
            z = paddle.add(x=x, y=y)
143 144 145 146
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            init_array = fluid.layers.array_write(x=z, i=i)
            array = paddle.assign(init_array)
            sums = fluid.layers.array_read(array=init_array, i=i)
147
            mean = paddle.mean(sums)
148 149
            append_backward(mean)

150 151 152 153 154
        place = (
            fluid.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
155 156 157 158
        exe = fluid.Executor(place)
        feed_x = np.random.random(size=(100, 10)).astype('float32')
        ones = np.ones((100, 10)).astype('float32')
        feed_add = feed_x + ones
159 160 161 162 163
        res = exe.run(
            main_program,
            feed={'x': feed_x},
            fetch_list=[sums.name, x.grad_name],
        )
164 165
        np.testing.assert_allclose(res[0], feed_add, rtol=1e-05)
        np.testing.assert_allclose(res[1], ones / 1000.0, rtol=1e-05)
166
        paddle.disable_static()
167 168 169

    def test_assign_NumpyArray(self):
        with fluid.dygraph.guard():
170
            array = np.random.random(size=(100, 10)).astype(np.bool_)
171 172
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1)
173
        np.testing.assert_allclose(result1.numpy(), array, rtol=1e-05)
174 175 176 177 178 179

    def test_assign_NumpyArray1(self):
        with fluid.dygraph.guard():
            array = np.random.random(size=(100, 10)).astype(np.float32)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1)
180
        np.testing.assert_allclose(result1.numpy(), array, rtol=1e-05)
181 182 183 184 185 186

    def test_assign_NumpyArray2(self):
        with fluid.dygraph.guard():
            array = np.random.random(size=(100, 10)).astype(np.int32)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1)
187
        np.testing.assert_allclose(result1.numpy(), array, rtol=1e-05)
188 189 190 191 192 193

    def test_assign_NumpyArray3(self):
        with fluid.dygraph.guard():
            array = np.random.random(size=(100, 10)).astype(np.int64)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1)
194
        np.testing.assert_allclose(result1.numpy(), array, rtol=1e-05)
195

196 197 198
    def test_assign_List(self):
        l = [1, 2, 3]
        result = paddle.assign(l)
199
        np.testing.assert_allclose(result.numpy(), np.array(l), rtol=1e-05)
200 201 202 203 204

    def test_assign_BasicTypes(self):
        result1 = paddle.assign(2)
        result2 = paddle.assign(3.0)
        result3 = paddle.assign(True)
205 206 207
        np.testing.assert_allclose(result1.numpy(), np.array([2]), rtol=1e-05)
        np.testing.assert_allclose(result2.numpy(), np.array([3.0]), rtol=1e-05)
        np.testing.assert_allclose(result3.numpy(), np.array([1]), rtol=1e-05)
208

209
    def test_clone(self):
210
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
C
chentianyu03 已提交
211 212
        self.python_api = paddle.clone

213 214 215 216 217 218 219
        x = paddle.ones([2])
        x.stop_gradient = False
        clone_x = paddle.clone(x)

        y = clone_x**3
        y.backward()

220 221 222
        np.testing.assert_array_equal(x, [1, 1])
        np.testing.assert_array_equal(clone_x.grad.numpy(), [3, 3])
        np.testing.assert_array_equal(x.grad.numpy(), [3, 3])
223
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
224 225 226 227 228 229 230
        paddle.enable_static()

        with program_guard(Program(), Program()):
            x_np = np.random.randn(2, 3).astype('float32')
            x = paddle.static.data("X", shape=[2, 3])
            clone_x = paddle.clone(x)
            exe = paddle.static.Executor()
231 232 233 234 235
            y_np = exe.run(
                paddle.static.default_main_program(),
                feed={'X': x_np},
                fetch_list=[clone_x],
            )[0]
236

237
        np.testing.assert_array_equal(y_np, x_np)
238
        paddle.disable_static()
239

240 241 242

class TestAssignOpErrorApi(unittest.TestCase):
    def test_errors(self):
243
        paddle.enable_static()
244
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
245 246
        with program_guard(Program(), Program()):
            # The type of input must be Variable or numpy.ndarray.
247 248 249
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace()
            )
250 251
            self.assertRaises(TypeError, paddle.assign, x1)
            # When the type of input is numpy.ndarray, the dtype of input must be float32, int32.
252 253
            x2 = np.array([[2.5, 2.5]], dtype='uint8')
            self.assertRaises(TypeError, paddle.assign, x2)
254
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
255
        paddle.disable_static()
256

257 258 259 260 261 262
    def test_type_error(self):
        paddle.enable_static()
        with program_guard(Program(), Program()):
            x = [paddle.randn([3, 3]), paddle.randn([3, 3])]
            # not support to assign list(var)
            self.assertRaises(TypeError, paddle.assign, x)
263
        paddle.disable_static()
264

265

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
class TestAssignDoubleGradCheck(unittest.TestCase):
    def assign_wrapper(self, x):
        return paddle.fluid.layers.assign(x[0])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [3, 4, 5], False, dtype)
        data.persistable = True
        out = paddle.fluid.layers.assign(data)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

281 282 283
        gradient_checker.double_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
284
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
285 286 287
        gradient_checker.double_grad_check_for_dygraph(
            self.assign_wrapper, [data], out, x_init=[data_arr], place=place
        )
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestAssignTripleGradCheck(unittest.TestCase):
    def assign_wrapper(self, x):
        return paddle.fluid.layers.assign(x[0])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [3, 4, 5], False, dtype)
        data.persistable = True
        out = paddle.fluid.layers.assign(data)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

313 314 315
        gradient_checker.triple_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
316
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
317 318 319
        gradient_checker.triple_grad_check_for_dygraph(
            self.assign_wrapper, [data], out, x_init=[data_arr], place=place
        )
320 321 322 323 324 325 326 327 328 329

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


Y
Yu Yang 已提交
330 331
if __name__ == '__main__':
    unittest.main()