linear_chain_crf_op.cc 13.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
caoying03 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/linear_chain_crf_op.h"
S
sneaxiy 已提交
16
#include <memory>
C
caoying03 已提交
17 18 19 20

namespace paddle {
namespace operators {

C
caoying03 已提交
21
class LinearChainCRFOpMaker : public framework::OpProtoAndCheckerMaker {
C
caoying03 已提交
22
 public:
Y
Yu Yang 已提交
23
  void Make() override {
C
Cao Ying 已提交
24
    AddInput("Emission",
K
kexinzhao 已提交
25 26
             "(LoDTensor, default LoDTensor<float>) "
             "A 2-D LoDTensor with shape [N x D], where N is the size of the "
C
Cao Ying 已提交
27 28 29
             "mini-batch and D is the total tag number. The unscaled emission "
             "weight matrix for the linear chain CRF. ");
    AddInput("Transition",
K
kexinzhao 已提交
30
             "(Tensor, default Tensor<float>) A 2-D Tensor with shape "
C
Cao Ying 已提交
31 32 33
             "[(D + 2) x D]. The learnable parameter for the linear_chain_crf "
             "operator. See more details in the operator's comments.");
    AddInput("Label",
34
             "(LoDTensor, default LoDTensor<int64_t>) A LoDTensor with shape "
C
Cao Ying 已提交
35 36
             "[N x 1], where N is the total element number in a mini-batch. "
             "The ground truth.");
C
caoying03 已提交
37 38
    AddOutput(
        "Alpha",
K
kexinzhao 已提交
39
        "(Tensor, default Tensor<float>) A 2-D Tensor with shape [N x D]. "
40 41 42
        "The forward vectors for the entire batch. Denote it as $\alpha$. "
        "$\alpha$ is a memo table used to calculate the normalization "
        "factor in CRF. $\alpha[k, v]$ stores the unnormalized "
C
Cao Ying 已提交
43
        "probabilites of all possible unfinished sequences of tags that end at "
44 45 46
        "position $k$ with tag $v$. For each $k$, "
        "$\alpha[k, v]$ is a vector of length $D$ with a component for "
        "each tag value $v$. This vector is called a forward vecotr and "
C
caoying03 已提交
47 48
        "will also be used in backward computations.")
        .AsIntermediate();
C
Cao Ying 已提交
49 50
    AddOutput(
        "EmissionExps",
K
kexinzhao 已提交
51
        "(Tensor, default Tensor<float>) A 2-D Tensor with shape [N x D]. "
C
Cao Ying 已提交
52 53 54
        "The exponentials of Input(Emission). This is an intermediate "
        "computational result in forward computation, and will be reused in "
        "backward computation.")
C
caoying03 已提交
55
        .AsIntermediate();
C
Cao Ying 已提交
56 57
    AddOutput(
        "TransitionExps",
K
kexinzhao 已提交
58
        "(Tensor, default Tensor<float>) A 2-D Tensor with shape "
C
Cao Ying 已提交
59 60 61
        "[(D + 2) x D]. The exponentials of Input(Transition). This is an "
        "intermediate computational result in forward computation, and "
        "will be reused in backward computation.")
C
caoying03 已提交
62
        .AsIntermediate();
C
caoying03 已提交
63 64
    AddOutput(
        "LogLikelihood",
K
kexinzhao 已提交
65
        "(Tensor, default Tensor<float>) The logarithm of the conditional "
C
caoying03 已提交
66 67
        "likelihood of each training sample in a mini-batch. This is a 2-D "
        "tensor with shape [S x 1], where S is the sequence number in a "
C
caoying03 已提交
68 69
        "mini-batch. Note: S is equal to the sequence number in a mini-batch. "
        "The output is no longer a LoDTensor.");
C
caoying03 已提交
70 71 72
    AddComment(R"DOC(
Conditional Random Field defines an undirected probabilistic graph with nodes
denoting random variables and edges denoting dependencies between these
73 74 75
variables. CRF learns the conditional probability $P(Y|X)$, where
$X = (x_1, x_2, ... , x_n)$ are structured inputs and
$Y = (y_1, y_2, ... , y_n)$ are labels for the inputs.
C
caoying03 已提交
76 77 78

Linear chain CRF is a special case of CRF that is useful for sequence labeling
task. Sequence labeling tasks do not assume a lot of conditional
C
caoying03 已提交
79 80 81
independences among inputs. The only constraint they impose is that the input
and output must be linear sequences. Thus, the graph of such a CRF is a simple
chain or a line, which results in the linear chain CRF.
C
caoying03 已提交
82

C
caoying03 已提交
83
This operator implements the Forward-Backward algorithm for the linear chain
K
kexinzhao 已提交
84 85
CRF. Please refer to http://www.cs.columbia.edu/~mcollins/fb.pdf and
http://cseweb.ucsd.edu/~elkan/250Bwinter2012/loglinearCRFs.pdf for details.
C
caoying03 已提交
86 87

Equation:
Y
yi.wu 已提交
88

89
1. Denote Input(Emission) to this operator as $x$ here.
K
kexinzhao 已提交
90
2. The first D values of Input(Transition) to this operator are for starting
91
weights, denoted as $a$ here.
K
kexinzhao 已提交
92
3. The next D values of Input(Transition) of this operator are for ending
93
weights, denoted as $b$ here.
K
kexinzhao 已提交
94
4. The remaning values of Input(Transition) are for transition weights,
95 96
denoted as $w$ here.
5. Denote Input(Label) as $s$ here.
C
caoying03 已提交
97

98 99 100 101 102 103 104
The probability of a sequence $s$ of length $L$ is defined as:
$$P(s) = (1/Z) \exp(a_{s_1} + b_{s_L}
                + \sum_{l=1}^L x_{s_l}
                + \sum_{l=2}^L w_{s_{l-1},s_l})$$

where $Z$ is a normalization value so that the sum of $P(s)$ over
all possible sequences is 1, and $x$ is the emission feature weight
C
caoying03 已提交
105 106
to the linear chain CRF.

K
kexinzhao 已提交
107
Finally, the linear chain CRF operator outputs the logarithm of the conditional
C
caoying03 已提交
108 109 110
likelihood of each training sample in a mini-batch.

NOTE:
Y
yi.wu 已提交
111

C
caoying03 已提交
112 113 114 115
1. The feature function for a CRF is made up of the emission features and the
transition features. The emission feature weights are NOT computed in
this operator. They MUST be computed first before this operator is called.

C
caoying03 已提交
116
2. Because this operator performs global normalization over all possible
C
caoying03 已提交
117 118 119 120
sequences internally, it expects UNSCALED emission feature weights.
Please do not call this op with the emission feature being output of any
nonlinear activation.

121
3. The 2nd dimension of Input(Emission) MUST be equal to the tag number.
C
caoying03 已提交
122 123 124 125 126

)DOC");
  }
};

C
caoying03 已提交
127
class LinearChainCRFOp : public framework::OperatorWithKernel {
C
caoying03 已提交
128 129 130
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
caoying03 已提交
131 132 133 134 135 136 137 138 139
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Emission"),
                   "Input(Emission) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Transition"),
                   "Input(Transition) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");

    PADDLE_ENFORCE(ctx->HasOutput("Alpha"),
                   "Output(Alpha) should be not null.");
C
caoying03 已提交
140 141 142 143
    PADDLE_ENFORCE(ctx->HasOutput("EmissionExps"),
                   "Output(EmissionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("TransitionExps"),
                   "Output(TransitionExps) should be not null.");
C
caoying03 已提交
144 145 146 147
    PADDLE_ENFORCE(ctx->HasOutput("LogLikelihood"),
                   "Output(LogLikelihood) should be not null.");

    auto emission_dims = ctx->GetInputDim("Emission");
T
tensor-tang 已提交
148
    PADDLE_ENFORCE_EQ(emission_dims.size(), 2,
149
                      "The Input(Emission) should be a 2-D tensor.");
C
caoying03 已提交
150 151 152
    PADDLE_ENFORCE(emission_dims[0], "An empty mini-batch is not allowed.");

    auto transition_dims = ctx->GetInputDim("Transition");
T
tensor-tang 已提交
153
    PADDLE_ENFORCE_EQ(transition_dims.size(), 2,
154
                      "The Input(Transition) should be a 2-D tensor.");
X
xuezhong 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167
    bool check = true;
    if ((!ctx->IsRuntime()) &&
        (transition_dims[0] <= 0 || transition_dims[1] <= 0)) {
      check = false;
    }
    if (check) {
      PADDLE_ENFORCE_EQ(
          transition_dims[0] - 2, transition_dims[1],
          "An invalid dimension for the Input(Transition), which should "
          "be a 2-D tensor with shape [(D + 2) x D].");
    }
    PADDLE_INFERSHAPE_ENFORCE_EQ(
        ctx, emission_dims[1], transition_dims[1],
168
        "The 2nd dimension of the Input(Emission) and the Input(Transition) "
C
caoying03 已提交
169
        "should be equal to the tag number.");
C
caoying03 已提交
170 171

    auto label_dims = ctx->GetInputDim("Label");
C
caoying03 已提交
172
    PADDLE_ENFORCE(label_dims.size() == 2UL && label_dims[1] == 1UL,
173 174
                   "The Input(Label) should be a 2-D tensor with the 2nd "
                   "dimensions fixed to 1.");
X
xuezhong 已提交
175 176
    PADDLE_INFERSHAPE_ENFORCE_EQ(
        ctx, emission_dims[0], label_dims[0],
177 178
        "The height of Input(Emission) and the height of Input(Label) "
        "should be the same.");
C
caoying03 已提交
179 180

    ctx->SetOutputDim("Alpha", emission_dims);
C
caoying03 已提交
181 182
    ctx->SetOutputDim("EmissionExps", emission_dims);
    ctx->SetOutputDim("TransitionExps", transition_dims);
C
caoying03 已提交
183
    // TODO(caoying) This is tricky. The 1st dimension of Output(LogLikelihood)
184
    // is the sequence number in a mini-batch. The dimension set here should be
C
caoying03 已提交
185 186
    // resized to its correct size in the function Compute. Fix this once we can
    // get LoD information in the InferShape interface.
C
caoying03 已提交
187 188 189
    ctx->SetOutputDim("LogLikelihood", {emission_dims[0], 1});
  }

C
caoying03 已提交
190
 protected:
C
Cao Ying 已提交
191 192
  // Explicitly set that the data type of computation kernel of linear_chain_crf
  // is determined by its input "Emission".
193
  framework::OpKernelType GetExpectedKernelType(
C
caoying03 已提交
194
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
195 196
    return framework::OpKernelType(ctx.Input<LoDTensor>("Emission")->type(),
                                   platform::CPUPlace());
C
caoying03 已提交
197
  }
C
caoying03 已提交
198 199
};

C
caoying03 已提交
200
class LinearChainCRFGradOp : public framework::OperatorWithKernel {
C
caoying03 已提交
201 202 203
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
caoying03 已提交
204 205 206 207 208 209 210 211 212
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("EmissionExps"),
                   "Input(EmissionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("TransitionExps"),
                   "Input(TransitionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("LogLikelihood")),
                   "Input(LogLikelihood@GRAD) shoudl be not null.");

    auto emission_exps_dims = ctx->GetInputDim("EmissionExps");
T
tensor-tang 已提交
213
    PADDLE_ENFORCE_EQ(emission_exps_dims.size(), 2,
C
caoying03 已提交
214
                      "The Input(EmissionExps) should be a 2-D tensor.");
C
caoying03 已提交
215 216 217
    PADDLE_ENFORCE(emission_exps_dims[0],
                   "An empty mini-batch is not allowed.");

218
    auto transition_exps_dims = ctx->GetInputDim("TransitionExps");
T
tensor-tang 已提交
219
    PADDLE_ENFORCE_EQ(transition_exps_dims.size(), 2,
C
caoying03 已提交
220
                      "The Input(TransitionExps) should be a 2-D tensor.");
X
xuezhong 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233
    bool check = true;
    if ((!ctx->IsRuntime()) &&
        (transition_exps_dims[0] <= 0 || transition_exps_dims[1] <= 0)) {
      check = false;
    }
    if (check) {
      PADDLE_ENFORCE_EQ(
          transition_exps_dims[0] - 2, transition_exps_dims[1],
          "An invalid dimension for the Input(TransitionExps), which should "
          "be a 2-D tensor with shape [(D + 2) x D].");
    }
    PADDLE_INFERSHAPE_ENFORCE_EQ(
        ctx, emission_exps_dims[1], transition_exps_dims[1],
C
caoying03 已提交
234 235
        "The 2nd dimension of the Input(EmissionExps) and the "
        "Input(TransitionExps) should be equal to the tag number.");
C
caoying03 已提交
236 237

    auto label_dims = ctx->GetInputDim("Label");
C
caoying03 已提交
238 239 240
    PADDLE_ENFORCE(label_dims.size() == 2UL && label_dims[1] == 1UL,
                   "The Input(Label) should be a 2-D tensor with the 2nd "
                   "dimensions fixed to 1.");
X
xuezhong 已提交
241 242
    PADDLE_INFERSHAPE_ENFORCE_EQ(
        ctx, emission_exps_dims[0], label_dims[0],
C
caoying03 已提交
243 244 245
        "The height of Input(EmissionExps) and the height of Input(Label) "
        "should be the same.");

C
caoying03 已提交
246 247
    if (ctx->HasOutput(framework::GradVarName("Emission"))) {
      ctx->SetOutputDim(framework::GradVarName("Emission"), emission_exps_dims);
S
sneaxiy 已提交
248
      ctx->ShareLoD("Emission", framework::GradVarName("Emission"));
C
caoying03 已提交
249 250 251 252
    }
    if (ctx->HasOutput(framework::GradVarName("Transition"))) {
      ctx->SetOutputDim(framework::GradVarName("Transition"),
                        transition_exps_dims);
S
sneaxiy 已提交
253
      ctx->ShareLoD("Transition", framework::GradVarName("Transition"));
C
caoying03 已提交
254
    }
C
caoying03 已提交
255
  }
C
caoying03 已提交
256 257 258

 protected:
  // Explicitly set that the data type of output of the linear_chain_crf_grad
C
caoying03 已提交
259
  // operator is determined by its input: gradients of LogLikelihood.
260
  framework::OpKernelType GetExpectedKernelType(
C
caoying03 已提交
261
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
262
    return framework::OpKernelType(
Y
Yu Yang 已提交
263
        ctx.Input<LoDTensor>(framework::GradVarName("LogLikelihood"))->type(),
264
        platform::CPUPlace());
C
caoying03 已提交
265
  }
C
caoying03 已提交
266 267
};

S
sneaxiy 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
class LinearChainCRFGradDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("linear_chain_crf_grad");
    op->SetAttrMap(Attrs());

    op->SetInput("Emission", Input("Emission"));
    op->SetInput("Transition", Input("Transition"));
    op->SetInput("Label", Input("Label"));

    op->SetInput("Alpha", Output("Alpha"));
    op->SetInput("EmissionExps", Output("EmissionExps"));
    op->SetInput("TransitionExps", Output("TransitionExps"));

    op->SetInput(framework::GradVarName("LogLikelihood"),
                 OutputGrad("LogLikelihood"));

    op->SetOutput(framework::GradVarName("Emission"), InputGrad("Emission"));
    op->SetOutput(framework::GradVarName("Transition"),
                  InputGrad("Transition"));

    return op;
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(
    LinearChainCRFGradNoNeedBufferVarsInference, "Transition", "Emission");

C
caoying03 已提交
300 301 302 303
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
304
REGISTER_OPERATOR(linear_chain_crf, ops::LinearChainCRFOp,
S
sneaxiy 已提交
305 306 307
                  ops::LinearChainCRFOpMaker, ops::LinearChainCRFGradDescMaker);
REGISTER_OPERATOR(linear_chain_crf_grad, ops::LinearChainCRFGradOp,
                  ops::LinearChainCRFGradNoNeedBufferVarsInference);
308 309
REGISTER_OP_CPU_KERNEL(
    linear_chain_crf,
Q
QI JUN 已提交
310 311
    ops::LinearChainCRFOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LinearChainCRFOpKernel<paddle::platform::CPUDeviceContext, double>);
312 313
REGISTER_OP_CPU_KERNEL(
    linear_chain_crf_grad,
Q
QI JUN 已提交
314 315 316
    ops::LinearChainCRFGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LinearChainCRFGradOpKernel<paddle::platform::CPUDeviceContext,
                                    double>);