operator.h 12.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <string>
D
dzhwinter 已提交
20
#include <tuple>
Q
Qiao Longfei 已提交
21 22
#include <unordered_map>
#include <vector>
D
dzhwinter 已提交
23 24
#define GLOG_NO_ABBREVIATED_SEVERITIES
#define GOOGLE_GLOG_DLL_DECL
Q
Qiao Longfei 已提交
25

Y
Yu Yang 已提交
26
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
27 28 29 30 31 32 33 34 35 36 37
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
38 39 40 41

namespace paddle {
namespace framework {

42
/// If a variable is a empty variable, that name will be used.
43
constexpr char kEmptyVarName[] = "@EMPTY@";
44 45 46

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
47
constexpr char kTempVarName[] = "@TEMP@";
48 49 50 51

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
52
constexpr char kGradVarSuffix[] = "@GRAD";
53 54

/// Variables with this suffix are supposed to be filled up with zeros.
55
constexpr char kZeroVarSuffix[] = "@ZERO";
56

D
dzhwinter 已提交
57
// define some kernel priority
58
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
59 60
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

61 62 63 64
inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
qiaolongfei 已提交
65 66
proto::VarType::Type GetDataTypeOfVar(const Variable* var);

Q
Qiao Longfei 已提交
67
class OperatorBase;
68
class ExecutionContext;
69

Q
Qiao Longfei 已提交
70 71 72 73 74 75 76 77
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
78 79
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
80

Q
Qiao Longfei 已提交
81 82
  virtual ~OperatorBase() {}

83
  /// Executor will call this interface function to Run an op.
84 85
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
86

T
typhoonzero 已提交
87 88 89
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

90 91 92
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
93

94 95
  virtual bool SupportGPU() const { return false; }

96 97 98 99 100 101 102 103 104
  const std::string& Type() const { return type_; }

  template <typename T>
  inline const T& Attr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
105

Y
Yu Yang 已提交
106 107
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
108

109
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
110
  //! Get a input with argument's name described in `op_proto`
111
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
112
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
113
  const std::vector<std::string>& Inputs(const std::string& name) const;
114
  //! Get all inputs variable names
Q
qijun 已提交
115 116
  std::vector<std::string> InputVars() const;

117
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
118
  //! Get a output with argument's name described in `op_proto`
119
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
120 121
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
122
  const std::vector<std::string>& Outputs(const std::string& name) const;
123
  //! Get all outputs variable names
Y
Yu Yang 已提交
124
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
125

Q
qiaolongfei 已提交
126
 protected:
Q
Qiao Longfei 已提交
127
  std::string type_;
D
dongzhihong 已提交
128
  // NOTE: in case of OpGrad, inputs_ contains:
129
  // I (Inputs)
D
dongzhihong 已提交
130 131
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
132
  VariableNameMap inputs_;
Y
Yu Yang 已提交
133

D
dongzhihong 已提交
134 135
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
136
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
137
  AttributeMap attrs_;
138 139 140 141

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
142 143
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
144 145
};

146
class ExecutionContext {
Y
Yan Chunwei 已提交
147
 public:
148 149 150
  ExecutionContext(const OperatorBase& op, const Scope& scope,
                   const platform::DeviceContext& device_context)
      : op_(op), scope_(scope), device_context_(device_context) {}
151

Q
qiaolongfei 已提交
152 153 154 155
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
156
  template <typename T>
Y
Yu Yang 已提交
157 158
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
159 160
  }

161
  bool HasInput(const std::string& name) const;
162

163
  bool HasOutput(const std::string& name) const;
164

Y
Yu Yang 已提交
165
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
166
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
167 168
  }

Y
Yu Yang 已提交
169
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
170
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
171 172
  }

173
  const Variable* InputVar(const std::string& name) const {
174
    auto ipt = op_.Input(name);
Y
Yu Yang 已提交
175
    return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
Y
Yan Chunwei 已提交
176 177
  }

178
  Variable* OutputVar(const std::string& name) const {
179
    auto opt = op_.Output(name);
Y
Yu Yang 已提交
180
    return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
Y
Yan Chunwei 已提交
181 182
  }

183 184
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
185 186
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
187
    res.reserve(names.size());
188 189
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
190 191
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
192
                   });
Y
Yan Chunwei 已提交
193 194 195
    return res;
  }

196
  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
197
    auto names = op_.Outputs(name);
198
    std::vector<Variable*> res;
199
    res.reserve(names.size());
200 201
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
202 203
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
204
                   });
Y
Yan Chunwei 已提交
205 206 207
    return res;
  }

208 209
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
210
    auto* var = InputVar(name);
211
    return var == nullptr ? nullptr : &var->Get<T>();
212 213 214 215
  }

  template <typename T>
  T* Output(const std::string& name) const {
216
    auto var = OutputVar(name);
217
    return var == nullptr ? nullptr : var->GetMutable<T>();
218 219 220 221 222 223 224 225
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
226
                   [&](const std::string& sub_name) {
227
                     auto var = scope_.FindVar(sub_name);
228
                     return var == nullptr ? nullptr : &var->Get<T>();
229 230 231 232 233
                   });
    return res;
  }

  template <typename T>
234
  std::vector<T*> MultiOutput(const std::string& name) const {
235
    auto names = op_.Outputs(name);
236
    std::vector<T*> res;
237 238
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
239
                   [&](const std::string& sub_name) {
240
                     auto var = scope_.FindVar(sub_name);
241
                     return var == nullptr ? nullptr : var->GetMutable<T>();
242 243 244 245
                   });
    return res;
  }

246
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
247

Q
QI JUN 已提交
248 249 250 251 252
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

253
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
254
    return device_context_;
Q
qijun 已提交
255
  }
Q
qijun 已提交
256

Q
QI JUN 已提交
257 258 259 260 261 262 263 264
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
265
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
266 267 268
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
269

D
dzhwinter 已提交
270
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
271 272 273 274
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

275
 private:
276 277
  const OperatorBase& op_;
  const Scope& scope_;
278
  const platform::DeviceContext& device_context_;
Q
Qiao Longfei 已提交
279 280
};

281 282 283 284 285 286 287 288 289 290 291 292 293 294
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
295
class OpKernelBase {
Q
qijun 已提交
296
 public:
Q
qijun 已提交
297
  /**
298
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
299 300
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
301
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
302 303
   */

304
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
305

Y
Yu Yang 已提交
306 307 308 309 310 311 312
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
313 314
};

Y
Yu Yang 已提交
315 316
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
317
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
318
  using OpKernelMap =
Y
yuyang18 已提交
319
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
320

Y
Yu Yang 已提交
321 322
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
323 324
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
325 326 327 328
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
329
  }
Y
Yan Chunwei 已提交
330

331
  bool SupportGPU() const override {
Y
Yu Yang 已提交
332 333 334 335 336
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
337 338
  }

339 340 341
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
342

Q
qiaolongfei 已提交
343
 protected:
344 345 346 347
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
348 349

 private:
350
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
351
  // same.
352
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
353
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
Y
yuyang18 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367

  /**
   * Transfer data from scope to a transfered scope. If there is no data need to
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
  Scope* TryTransferData(
      const Scope& scope, const OpKernelType& expected_kernel_key,
      std::vector<std::string>* transfered_inplace_vars) const;

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
Q
Qiao Longfei 已提交
368 369
};

Y
Yu Yang 已提交
370 371
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
372 373
}  // namespace framework
}  // namespace paddle