operator.h 12.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <string>
D
dzhwinter 已提交
20
#include <tuple>
Q
Qiao Longfei 已提交
21 22 23
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
24
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
25 26 27 28 29 30 31 32 33 34 35
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
36 37 38 39

namespace paddle {
namespace framework {

40
/// If a variable is a empty variable, that name will be used.
41
constexpr char kEmptyVarName[] = "@EMPTY@";
42 43 44

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
45
constexpr char kTempVarName[] = "@TEMP@";
46 47 48 49

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
50
constexpr char kGradVarSuffix[] = "@GRAD";
51 52

/// Variables with this suffix are supposed to be filled up with zeros.
53
constexpr char kZeroVarSuffix[] = "@ZERO";
54

D
dzhwinter 已提交
55
// define some kernel priority
56
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
57 58
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

59 60 61 62
inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
qiaolongfei 已提交
63 64
proto::VarType::Type GetDataTypeOfVar(const Variable* var);

Q
Qiao Longfei 已提交
65
class OperatorBase;
66
class ExecutionContext;
67

Q
Qiao Longfei 已提交
68 69 70 71 72 73 74 75
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
76 77
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
78

Q
Qiao Longfei 已提交
79 80
  virtual ~OperatorBase() {}

81
  /// Executor will call this interface function to Run an op.
82 83
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
84

T
typhoonzero 已提交
85 86 87
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

88 89 90
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
91

92 93
  virtual bool SupportGPU() const { return false; }

94 95 96 97 98 99 100 101 102
  const std::string& Type() const { return type_; }

  template <typename T>
  inline const T& Attr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
103

Y
Yu Yang 已提交
104 105
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
106

107
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
108
  //! Get a input with argument's name described in `op_proto`
109
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
110
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
111
  const std::vector<std::string>& Inputs(const std::string& name) const;
112
  //! Get all inputs variable names
Q
qijun 已提交
113 114
  std::vector<std::string> InputVars() const;

115
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
116
  //! Get a output with argument's name described in `op_proto`
117
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
118 119
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
120
  const std::vector<std::string>& Outputs(const std::string& name) const;
121
  //! Get all outputs variable names
Y
Yu Yang 已提交
122
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
123

Q
qiaolongfei 已提交
124
 protected:
Q
Qiao Longfei 已提交
125
  std::string type_;
D
dongzhihong 已提交
126
  // NOTE: in case of OpGrad, inputs_ contains:
127
  // I (Inputs)
D
dongzhihong 已提交
128 129
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
130
  VariableNameMap inputs_;
Y
Yu Yang 已提交
131

D
dongzhihong 已提交
132 133
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
134
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
135
  AttributeMap attrs_;
136 137 138 139

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
140 141
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
142 143
};

144
class ExecutionContext {
Y
Yan Chunwei 已提交
145
 public:
146 147 148
  ExecutionContext(const OperatorBase& op, const Scope& scope,
                   const platform::DeviceContext& device_context)
      : op_(op), scope_(scope), device_context_(device_context) {}
149

Q
qiaolongfei 已提交
150 151 152 153
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
154
  template <typename T>
Y
Yu Yang 已提交
155 156
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
157 158
  }

159
  bool HasInput(const std::string& name) const;
160

161
  bool HasOutput(const std::string& name) const;
162

Y
Yu Yang 已提交
163
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
164
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
165 166
  }

Y
Yu Yang 已提交
167
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
168
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
169 170
  }

171
  const Variable* InputVar(const std::string& name) const {
172
    auto ipt = op_.Input(name);
Y
Yu Yang 已提交
173
    return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
Y
Yan Chunwei 已提交
174 175
  }

176
  Variable* OutputVar(const std::string& name) const {
177
    auto opt = op_.Output(name);
Y
Yu Yang 已提交
178
    return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
Y
Yan Chunwei 已提交
179 180
  }

181 182
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
183 184
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
185
    res.reserve(names.size());
186 187
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
188 189
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
190
                   });
Y
Yan Chunwei 已提交
191 192 193
    return res;
  }

194
  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
195
    auto names = op_.Outputs(name);
196
    std::vector<Variable*> res;
197
    res.reserve(names.size());
198 199
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
200 201
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
202
                   });
Y
Yan Chunwei 已提交
203 204 205
    return res;
  }

206 207
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
208
    auto* var = InputVar(name);
209
    return var == nullptr ? nullptr : &var->Get<T>();
210 211 212 213
  }

  template <typename T>
  T* Output(const std::string& name) const {
214
    auto var = OutputVar(name);
215
    return var == nullptr ? nullptr : var->GetMutable<T>();
216 217 218 219 220 221 222 223
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
224
                   [&](const std::string& sub_name) {
225
                     auto var = scope_.FindVar(sub_name);
226
                     return var == nullptr ? nullptr : &var->Get<T>();
227 228 229 230 231
                   });
    return res;
  }

  template <typename T>
232
  std::vector<T*> MultiOutput(const std::string& name) const {
233
    auto names = op_.Outputs(name);
234
    std::vector<T*> res;
235 236
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
237
                   [&](const std::string& sub_name) {
238
                     auto var = scope_.FindVar(sub_name);
239
                     return var == nullptr ? nullptr : var->GetMutable<T>();
240 241 242 243
                   });
    return res;
  }

244
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
245

Q
QI JUN 已提交
246 247 248 249 250
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

251
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
252
    return device_context_;
Q
qijun 已提交
253
  }
Q
qijun 已提交
254

Q
QI JUN 已提交
255 256 257 258 259 260 261 262
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
263
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
264 265 266
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
267

D
dzhwinter 已提交
268
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
269 270 271 272
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

273
 private:
274 275
  const OperatorBase& op_;
  const Scope& scope_;
276
  const platform::DeviceContext& device_context_;
Q
Qiao Longfei 已提交
277 278
};

279 280 281 282 283 284 285 286 287 288 289 290 291 292
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
293
class OpKernelBase {
Q
qijun 已提交
294
 public:
Q
qijun 已提交
295
  /**
296
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
297 298
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
299
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
300 301
   */

302
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
303

Y
Yu Yang 已提交
304 305 306 307 308 309 310
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
311 312
};

Y
Yu Yang 已提交
313 314
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
315
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
316
  using OpKernelMap =
Y
yuyang18 已提交
317
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
318

Y
Yu Yang 已提交
319 320
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
321 322
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
323 324 325 326
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
327
  }
Y
Yan Chunwei 已提交
328

329
  bool SupportGPU() const override {
Y
Yu Yang 已提交
330 331 332 333 334
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
335 336
  }

337 338 339
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
340

Q
qiaolongfei 已提交
341
 protected:
342 343 344 345
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
346 347

 private:
348
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
349
  // same.
350
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
351
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
Y
yuyang18 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365

  /**
   * Transfer data from scope to a transfered scope. If there is no data need to
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
  Scope* TryTransferData(
      const Scope& scope, const OpKernelType& expected_kernel_key,
      std::vector<std::string>* transfered_inplace_vars) const;

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
Q
Qiao Longfei 已提交
366 367
};

Y
Yu Yang 已提交
368 369
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
370 371
}  // namespace framework
}  // namespace paddle