rmsprop_kernel.cc 4.2 KB
Newer Older
H
houj04 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/rmsprop_kernel.h"

#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"

#include "paddle/fluid/memory/memcpy.h"

namespace phi {

template <typename T, typename Context>
void RmspropDenseKernel(const Context& dev_ctx,
                        const DenseTensor& param,
                        const DenseTensor& mean_square,
                        const DenseTensor& grad,
                        const DenseTensor& moment,
                        const DenseTensor& learning_rate,
                        const paddle::optional<DenseTensor>& mean_grad,
                        float epsilon,
                        float decay,
                        float momentum,
                        bool centered,
                        DenseTensor* param_out,
                        DenseTensor* moment_out,
                        DenseTensor* mean_square_out,
                        DenseTensor* mean_grad_out) {
  // copy learning_rate to cpu
  PADDLE_ENFORCE_EQ(
      learning_rate.dims().size(),
      1,
      errors::InvalidArgument("learining rate should have dimension = 1."
                              " But received learning rate dim [%s] ",
                              learning_rate.dims().size()));
  T learning_rate_cpu = 0.0f;
  paddle::memory::Copy(CPUPlace(),
                       static_cast<void*>(&learning_rate_cpu),
                       dev_ctx.GetPlace(),
                       static_cast<const void*>(learning_rate.data()),
                       sizeof(T));

  // alloc output
  dev_ctx.template Alloc<T>(param_out);
  dev_ctx.template Alloc<T>(moment_out);
  dev_ctx.template Alloc<T>(mean_square_out);

Y
ykkk2333 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
  if (centered) {
    dev_ctx.template Alloc<T>(mean_grad_out);
    auto mg_tensor = mean_grad.get_ptr();
    if (mg_tensor) {
      PADDLE_ENFORCE_EQ(
          mg_tensor->Holder(),
          mean_grad_out->Holder(),
          phi::errors::InvalidArgument(
              "MeanGrad and MeanGradOut must be the same Tensor"));
    } else {
      PADDLE_ENFORCE_EQ(
          mg_tensor,
          mean_grad_out,
          phi::errors::InvalidArgument(
              "MeanGrad and MeanGradOut must be the same Tensor"));
    }
    int r = xpu::rmsprop(dev_ctx.x_context(),
                         grad.data<T>(),
                         param.data<T>(),
                         mean_square.data<T>(),
                         moment.data<T>(),
                         param_out->data<T>(),
                         mean_square_out->data<T>(),
                         moment_out->data<T>(),
                         epsilon,
                         decay,
                         momentum,
                         learning_rate_cpu,
                         param.numel(),
                         centered,
                         mg_tensor->data<T>(),
                         mean_grad_out->data<T>());
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "centered rmsprop");

  } else {
    int r = xpu::rmsprop(dev_ctx.x_context(),
                         grad.data<T>(),
                         param.data<T>(),
                         mean_square.data<T>(),
                         moment.data<T>(),
                         param_out->data<T>(),
                         mean_square_out->data<T>(),
                         moment_out->data<T>(),
                         epsilon,
                         decay,
                         momentum,
                         learning_rate_cpu,
                         param.numel());
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "uncentered rmsprop");
  }
H
houj04 已提交
109 110 111 112
}
}  // namespace phi

PD_REGISTER_KERNEL(rmsprop, XPU, ALL_LAYOUT, phi::RmspropDenseKernel, float) {}