// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/rmsprop_kernel.h" #include "paddle/phi/backends/xpu/enforce_xpu.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/fluid/memory/memcpy.h" namespace phi { template void RmspropDenseKernel(const Context& dev_ctx, const DenseTensor& param, const DenseTensor& mean_square, const DenseTensor& grad, const DenseTensor& moment, const DenseTensor& learning_rate, const paddle::optional& mean_grad, float epsilon, float decay, float momentum, bool centered, DenseTensor* param_out, DenseTensor* moment_out, DenseTensor* mean_square_out, DenseTensor* mean_grad_out) { // copy learning_rate to cpu PADDLE_ENFORCE_EQ( learning_rate.dims().size(), 1, errors::InvalidArgument("learining rate should have dimension = 1." " But received learning rate dim [%s] ", learning_rate.dims().size())); T learning_rate_cpu = 0.0f; paddle::memory::Copy(CPUPlace(), static_cast(&learning_rate_cpu), dev_ctx.GetPlace(), static_cast(learning_rate.data()), sizeof(T)); // alloc output dev_ctx.template Alloc(param_out); dev_ctx.template Alloc(moment_out); dev_ctx.template Alloc(mean_square_out); if (centered) { dev_ctx.template Alloc(mean_grad_out); auto mg_tensor = mean_grad.get_ptr(); if (mg_tensor) { PADDLE_ENFORCE_EQ( mg_tensor->Holder(), mean_grad_out->Holder(), phi::errors::InvalidArgument( "MeanGrad and MeanGradOut must be the same Tensor")); } else { PADDLE_ENFORCE_EQ( mg_tensor, mean_grad_out, phi::errors::InvalidArgument( "MeanGrad and MeanGradOut must be the same Tensor")); } int r = xpu::rmsprop(dev_ctx.x_context(), grad.data(), param.data(), mean_square.data(), moment.data(), param_out->data(), mean_square_out->data(), moment_out->data(), epsilon, decay, momentum, learning_rate_cpu, param.numel(), centered, mg_tensor->data(), mean_grad_out->data()); PADDLE_ENFORCE_XDNN_SUCCESS(r, "centered rmsprop"); } else { int r = xpu::rmsprop(dev_ctx.x_context(), grad.data(), param.data(), mean_square.data(), moment.data(), param_out->data(), mean_square_out->data(), moment_out->data(), epsilon, decay, momentum, learning_rate_cpu, param.numel()); PADDLE_ENFORCE_XDNN_SUCCESS(r, "uncentered rmsprop"); } } } // namespace phi PD_REGISTER_KERNEL(rmsprop, XPU, ALL_LAYOUT, phi::RmspropDenseKernel, float) {}