dist_multi_trainer.cc 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
#include <vector>
17
#include "io/fs.h"
18
#include "paddle/fluid/framework/data_feed_factory.h"
D
dongdaxiang 已提交
19
#include "paddle/fluid/framework/data_set.h"
20
#include "paddle/fluid/framework/device_worker_factory.h"
21
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
22 23 24 25 26
#include "paddle/fluid/framework/trainer.h"

namespace paddle {
namespace framework {

27 28
void DistMultiTrainer::Initialize(const TrainerDesc &trainer_desc,
                                  Dataset *dataset) {
29
  thread_num_ = trainer_desc.thread_num();
30
  SetDataset(dataset);
D
dongdaxiang 已提交
31

H
hutuxian 已提交
32
  ParseDumpConfig(trainer_desc);
X
xujiaqi01 已提交
33 34
  mpi_rank_ = trainer_desc.mpi_rank();
  mpi_size_ = trainer_desc.mpi_size();
T
Thunderbrook 已提交
35
  dump_file_num_ = trainer_desc.dump_file_num();
Y
yaoxuefeng 已提交
36
  user_define_dump_filename_ = trainer_desc.user_define_dump_filename();
37
  const std::vector<paddle::framework::DataFeed *> readers =
38
      dataset->GetReaders();
T
Thunderbrook 已提交
39
  RegisterHeterCallback();
40 41
  thread_num_ = readers.size();
  workers_.resize(thread_num_);
42 43 44 45 46
  for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
       i++) {
    need_merge_var_names_.push_back(
        trainer_desc.downpour_param().stat_var_names(i));
  }
47

48 49 50 51
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
        trainer_desc.device_worker_name());
    workers_[i]->SetDeviceIndex(i);
D
dongdaxiang 已提交
52
    workers_[i]->SetDataFeed(readers[i]);
H
hutuxian 已提交
53 54 55 56 57
    workers_[i]->SetNeedDumpField(need_dump_field_);
    workers_[i]->SetNeedDumpParam(need_dump_param_);
    workers_[i]->SetDumpFieldVector(dump_fields_);
    workers_[i]->SetDumpParamVector(dump_param_);
    workers_[i]->InitRandomDumpConfig(trainer_desc);
58
    workers_[i]->Initialize(trainer_desc);
T
Thunderbrook 已提交
59
    workers_[i]->SetWorkerNum(thread_num_);
60 61
  }

D
dongdaxiang 已提交
62
  VLOG(3) << "going to initialize pull dense worker";
63 64
  pull_dense_worker_ = PullDenseWorker::GetInstance();
  pull_dense_worker_->Initialize(trainer_desc);
D
dongdaxiang 已提交
65
  VLOG(3) << "initialize pull dense worker";
66
  SetDebug(trainer_desc.debug());
67 68
}

T
Thunderbrook 已提交
69 70 71 72 73 74 75
void DistMultiTrainer::RegisterHeterCallback() {
  auto fleet_ptr = FleetWrapper::GetInstance();
  fleet_ptr->RegisterHeterCallback([this](int worker, int taskid) {
    // workers_[worker]->Schedule(taskid);
  });
}

76 77 78 79 80
void DistMultiTrainer::InitDumpEnv() {
  queue_ = paddle::framework::MakeChannel<std::string>();
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->SetChannelWriter(queue_.get());
  }
T
Thunderbrook 已提交
81 82 83 84 85 86 87 88 89
  dump_thread_num_ = 1;
  if (dump_file_num_ > mpi_size_) {
    dump_thread_num_ = dump_file_num_ / mpi_size_;
    if (dump_file_num_ % mpi_size_ > mpi_rank_) {
      dump_thread_num_ += 1;
    }
  }
  for (int i = 0; i < dump_thread_num_; i++) {
    dump_thread_.push_back(
H
hutuxian 已提交
90
        std::thread(std::bind(&TrainerBase::DumpWork, this, i)));
T
Thunderbrook 已提交
91
  }
92 93
}

94 95 96 97 98 99 100 101
void DistMultiTrainer::InitTrainerEnv(const ProgramDesc &main_program,
                                      const platform::Place &place) {
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->SetPlace(place);
    workers_[i]->SetReaderPlace(place);
    workers_[i]->SetRootScope(root_scope_);
    workers_[i]->CreateDeviceResource(main_program);  // Program
    workers_[i]->BindingDataFeedMemory();
T
Thunderbrook 已提交
102 103 104
#ifdef PADDLE_WITH_PSLIB
    workers_[i]->CacheProgram(main_program);
#endif
105 106 107 108 109 110 111 112
  }
  // Scope* -> thread id, it will be used in push_dense op
  for (int i = 0; i < thread_num_; ++i) {
    Scope *thread_scope = workers_[i]->GetThreadScope();
    pull_dense_worker_->SetThreadIdByScope(thread_scope, i);
  }
}

113
void DistMultiTrainer::InitOtherEnv(const ProgramDesc &main_program) {
X
xujiaqi01 已提交
114
  if (need_dump_field_ || need_dump_param_) {
115 116
    InitDumpEnv();
  }
117
  pull_dense_worker_->SetRootScope(root_scope_);
118
  pull_dense_worker_->Start();
T
Thunderbrook 已提交
119 120 121 122 123
#ifdef PADDLE_WITH_PSLIB
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->GetXpuOpIndex();
  }
#endif
D
dongdaxiang 已提交
124
  VLOG(3) << "init other env done.";
125 126
}

127 128 129 130 131 132 133 134 135 136 137 138
void DistMultiTrainer::Run() {
  for (int thidx = 0; thidx < thread_num_; ++thidx) {
    if (!debug_) {
      threads_.push_back(
          std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
    } else {
      threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
                                     workers_[thidx].get()));
    }
  }
}

139 140 141 142
Scope *DistMultiTrainer::GetWorkerScope(int thread_id) {
  return workers_[thread_id]->GetThreadScope();
}

143
void DistMultiTrainer::Finalize() {
144
  for (auto &th : threads_) {
145 146
    th.join();
  }
147
  for (size_t i = 0; i < need_merge_var_names_.size(); i++) {
148 149 150 151 152 153 154 155 156 157 158 159 160
    Variable *root_var = root_scope_->FindVar(need_merge_var_names_[i]);
    if (root_var == nullptr) {
      continue;
    }
    LoDTensor *root_tensor = root_var->GetMutable<LoDTensor>();
    for (int j = 1; j < thread_num_; j++) {
      Scope *cur_thread_scope = workers_[j]->GetThreadScope();
      Variable *thread_var =
          cur_thread_scope->FindVar(need_merge_var_names_[i]);
      LoDTensor *thread_tensor = thread_var->GetMutable<LoDTensor>();
      if (root_tensor->numel() != thread_tensor->numel()) {
        continue;
      }
161 162 163 164 165 166 167 168 169 170 171 172
#define MergeCallback(cpp_type, proto_type)                                    \
  do {                                                                         \
    if (root_tensor->type() == proto_type) {                                   \
      if (thread_tensor->type() != proto_type) {                               \
        VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \
                << "] " << need_merge_var_names_[i]                            \
                << ", root tensor type=" << root_tensor->type()                \
                << ", thread tensor type=" << thread_tensor->type();           \
        exit(-1);                                                              \
      }                                                                        \
      MergeToRootScope<cpp_type>(root_tensor, thread_tensor);                  \
    }                                                                          \
173 174 175 176 177
  } while (0)
      _ForEachDataType_(MergeCallback);
    }
  }

X
xujiaqi01 已提交
178
  if (need_dump_field_ || need_dump_param_) {
179 180
    FinalizeDumpEnv();
  }
181
  pull_dense_worker_->Stop();
182
  root_scope_->DropKids();
183 184 185 186

  // flush local client push queue
  auto fleet_ptr_ = FleetWrapper::GetInstance();
  fleet_ptr_->ClientFlush();
187 188
}

189 190 191 192 193 194 195 196 197
template <typename T>
void DistMultiTrainer::MergeToRootScope(LoDTensor *root_tensor,
                                        LoDTensor *tensor) {
  T *root_data = root_tensor->data<T>();
  T *data = tensor->data<T>();
  for (int i = 0; i < tensor->numel(); i++) {
    root_data[i] += data[i];
  }
}
198 199
}  // namespace framework
}  // namespace paddle