binary.py 15.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from paddle import _C_ops, _legacy_C_ops
16
from paddle.fluid.framework import dygraph_only, core
17 18 19
from paddle import in_dynamic_mode
from paddle.fluid.layer_helper import LayerHelper
from .unary import cast
20 21 22

__all__ = []

23 24 25 26 27 28 29 30 31
_int_dtype_ = [
    core.VarDesc.VarType.UINT8,
    core.VarDesc.VarType.INT8,
    core.VarDesc.VarType.INT16,
    core.VarDesc.VarType.INT32,
    core.VarDesc.VarType.INT64,
    core.VarDesc.VarType.BOOL,
]

32 33 34 35

@dygraph_only
def matmul(x, y, name=None):
    """
36 37
    Note:    
        This API is only supported from ``CUDA 11.0`` .
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

    Applies matrix multiplication of two Tensors. 
    
    The supported input/output Tensor layout are as follows:
    
    Note:
        x[SparseCsrTensor] @ y[SparseCsrTensor] -> out[SparseCsrTensor]
        x[SparseCsrTensor] @ y[DenseTensor] -> out[DenseTensor]
        x[SparseCooTensor] @ y[SparseCooTensor] -> out[SparseCooTensor]
        x[SparseCooTensor] @ y[DenseTensor] -> out[DenseTensor]

    It supports backward propagation.

    Dimensions `x` and `y` must be >= 2D. Automatic broadcasting of Tensor is not supported.
    the shape of `x` should be `[*, M, K]` , and the shape of `y` should be `[*, K, N]` , where `*` 
    is zero or more batch dimensions.

    Args:
        x (Tensor): The input tensor. It can be SparseCooTensor/SparseCsrTensor. The data type can be float32 or float64.
        y (Tensor): The input tensor. It can be SparseCooTensor/SparseCsrTensor/DenseTensor. The data type can be float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: Its layout is determined by that of `x` and `y` .

    Examples:

        .. code-block:: python

67
            # required: gpu
68 69 70
            import paddle

            # csr @ dense -> dense
71 72 73
            crows = [0, 1, 2, 3]
            cols = [1, 2, 0]
            values = [1., 2., 3.]
74
            csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, [3, 3])
75 76 77 78 79
            # Tensor(shape=[3, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True, 
            #        crows=[0, 1, 2, 3], 
            #        cols=[1, 2, 0], 
            #        values=[1., 2., 3.])
            dense = paddle.ones([3, 2])
80
            out = paddle.sparse.matmul(csr, dense)
81 82 83 84 85 86 87 88
            # Tensor(shape=[3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[1., 1.],
            #         [2., 2.],
            #         [3., 3.]])

            # coo @ dense -> dense
            indices = [[0, 1, 2], [1, 2, 0]]
            values = [1., 2., 3.]
89
            coo = paddle.sparse.sparse_coo_tensor(indices, values, [3, 3])
90 91 92 93 94
            # Tensor(shape=[3, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True, 
            #        indices=[[0, 1, 2],
            #                 [1, 2, 0]], 
            #        values=[1., 2., 3.])
            dense = paddle.ones([3, 2])
95
            out = paddle.sparse.matmul(coo, dense)
96 97 98 99
            # Tensor(shape=[3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[1., 1.],
            #         [2., 2.],
            #         [3., 3.]])
100
    """
101
    return _C_ops.sparse_matmul(x, y)
102 103 104 105 106


@dygraph_only
def masked_matmul(x, y, mask, name=None):
    """
107 108
    Note:    
        This API is only supported from ``CUDA 11.3`` .
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

    Applies matrix multiplication of two Dense Tensors. 
    
    The supported input/output Tensor layout are as follows:
    
    Note:
        x[DenseTensor] @ y[DenseTensor] * mask[SparseCooTensor] -> out[SparseCooTensor]
        x[DenseTensor] @ y[DenseTensor] * mask[SparseCsrTensor] -> out[SparseCsrTensor]

    It supports backward propagation.

    Dimensions `x` and `y` must be  >= 2D. Automatic broadcasting of Tensor is not supported.
    the shape of `x` should be `[*, M, K]` , and the shape of `y` should be `[*, K, N]` , and the shape of `mask` should be `[*, M, N]` ,
    where `*` is zero or more batch dimensions.

    Args:
        x (Tensor): The input tensor. It is DenseTensor. The data type can be float32 or float64.
        y (Tensor): The input tensor. It is DenseTensor. The data type can be float32 or float64.
        mask (Tensor): The mask tensor, which can be SparseCooTensor/SparseCsrTensor. It specify sparse coordinates. The data type can be float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: SparseCoo or SparseCsr, which is determined by that of `mask` .

    Examples:

        .. code-block:: python

137
            # required: gpu
138 139 140 141
            import paddle
            paddle.seed(100)

            # dense @ dense * csr_mask -> csr
142 143 144 145
            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1., 2., 3., 4., 5.]
            dense_shape = [3, 4]
146
            mask = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
147 148 149 150 151 152 153 154
            # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
            #       crows=[0, 2, 3, 5],
            #       cols=[1, 3, 2, 0, 1],
            #       values=[1., 2., 3., 4., 5.])

            x = paddle.rand([3, 5])
            y = paddle.rand([5, 4])

155
            out = paddle.sparse.masked_matmul(x, y, mask)
156 157 158 159
            # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True, 
            #        crows=[0, 2, 3, 5], 
            #        cols=[1, 3, 2, 0, 1], 
            #        values=[0.98986477, 0.97800624, 1.14591956, 0.68561077, 0.94714981])
160 161

    """
162
    return _C_ops.sparse_masked_matmul(x, y, mask)
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195


@dygraph_only
def mv(x, vec, name=None):
    """
    Note:    
        This API is only supported from ``CUDA 11.0`` .

    Applies matrix-vector product of Sparse Matrix 'x' and Dense vector 'vec' . 
    
    The supported input/output Tensor layout are as follows:

    Note:
        x[SparseCsrTensor] @ y[DenseTensor] -> out[SparseCsrTensor]
        x[SparseCooTensor] @ y[DenseTensor] -> out[SparseCooTensor]

    It supports backward propagation.

    The shape of `x` should be `[M, N]` , and the shape of `y` should be `[N]` , 
    and the shape of `out` will be `[M]` .

    Args:
        x (Tensor): The input 2D tensor. It must be SparseCooTensor/SparseCsrTensor. The data type can be float32 or float64.
        y (Tensor): The input 1D tensor. It must be DenseTensor vector. The data type can be float32 or float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: 1D Tensor.

    Examples:

        .. code-block:: python
        
196
            # required: gpu
197 198 199 200 201 202 203 204 205 206
            import paddle
            from paddle.fluid.framework import _test_eager_guard 
            paddle.seed(100)

            # csr @ dense -> dense
            with _test_eager_guard():         
                crows = [0, 2, 3, 5]
                cols = [1, 3, 2, 0, 1]
                values = [1., 2., 3., 4., 5.]
                dense_shape = [3, 4]
207
                csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
208 209 210 211 212 213
                # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True, 
                #        crows=[0, 2, 3, 5], 
                #        cols=[1, 3, 2, 0, 1], 
                #        values=[1., 2., 3., 4., 5.])
                vec = paddle.randn([4])
                
214
                out = paddle.sparse.mv(csr, vec)
215 216 217 218
                # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True,
                #        [-3.85499096, -2.42975140, -1.75087738])

    """
219
    return _C_ops.sparse_mv(x, vec)
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252


def add(x, y, name=None):
    """
    Add two sparse tensors element-wise. Input x and y's shape should be identical and have same sparse
    type(SparseCooTensor or SparseCsrTensor).If input is SparseCooTensor, x and y's sparse_dim should be identical.
    The equation is:

    .. math::
        out = x + y

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: the result tensor.

    Examples:

    ..  code-block:: python

        import paddle
        from paddle.fluid.framework import _test_eager_guard

        paddle.device.set_device("cpu")

        with _test_eager_guard():
            x = paddle.to_tensor([[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]], 'float32')
            y = paddle.to_tensor([[0, 0, 0, -2], [0, 2, -3, 0], [2, 3, 4, 8]], 'float32')
            sparse_x = x.to_sparse_csr()
            sparse_y = y.to_sparse_csr()
253
            sparse_z = paddle.sparse.add(sparse_x, sparse_y)
254 255 256 257 258 259 260 261
            print(sparse_z.to_dense())

        # [[ 0., -1.,  0.,  0.],
        # [ 0.,  2., -6.,  0.],
        # [ 6.,  8.,  4.,  8.]]

    """
    if y.dtype != x.dtype:
262 263 264 265 266 267 268 269 270 271 272 273 274 275
        y = cast(y, None, x.dtype)

    if in_dynamic_mode():
        return _C_ops.sparse_add(x, y)
    else:
        op_type = 'sparse_add'
        inputs = {'x': x, 'y': y}
        helper = LayerHelper(op_type)
        out = helper.create_sparse_variable_for_type_inference(x.dtype)
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs={'out': out},
                         attrs={})
        return out
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309


@dygraph_only
def subtract(x, y, name=None):
    """
    Subtract two sparse tensors element-wise. Input x and y's shape should be identical and have same sparse
    type(SparseCooTensor or SparseCsrTensor).If input is SparseCooTensor, x and y's sparse_dim should be identical.
    The equation is:

    .. math::
        out = x - y

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: the result tensor.

    Examples:

    ..  code-block:: python

        import paddle
        from paddle.fluid.framework import _test_eager_guard

        paddle.device.set_device("cpu")

        with _test_eager_guard():
            x = paddle.to_tensor([[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]], 'float32')
            y = paddle.to_tensor([[0, 0, 0, -2], [0, 2, -3, 0], [2, 3, 4, 8]], 'float32')
            sparse_x = x.to_sparse_csr()
            sparse_y = y.to_sparse_csr()
310
            sparse_z = paddle.sparse.subtract(sparse_x, sparse_y)
311 312 313 314 315 316 317 318
            print(sparse_z.to_dense())

        # [[ 0., -1.,  0.,  4.],
        # [ 0., -2.,  0.,  0.],
        # [ 2.,  2., -4., -8.]]

    """
    if y.dtype != x.dtype:
319 320
        y = _C_ops.sparse_cast(y, None, x.dtype)
    return _C_ops.sparse_subtract(x, y)
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354


@dygraph_only
def multiply(x, y, name=None):
    """
    Multiply two sparse tensors element-wise. Input x and y's shape should be identical and have same sparse
    type(SparseCooTensor or SparseCsrTensor).If input is SparseCooTensor, x and y's sparse_dim should be identical.
    The equation is:

    .. math::
        out = x * y

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: the result tensor.

    Examples:

    ..  code-block:: python

        import paddle
        from paddle.fluid.framework import _test_eager_guard

        paddle.device.set_device("cpu")

        with _test_eager_guard():
            x = paddle.to_tensor([[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]], 'float32')
            y = paddle.to_tensor([[0, 0, 0, -2], [0, 2, -3, 0], [2, 3, 4, 8]], 'float32')
            sparse_x = x.to_sparse_csr()
            sparse_y = y.to_sparse_csr()
355
            sparse_z = paddle.sparse.multiply(sparse_x, sparse_y)
356 357 358 359 360 361 362 363
            print(sparse_z.to_dense())

        # [[ 0.,  0.,  0., -4.],
        # [ 0.,  0.,  9.,  0.],
        # [ 8., 15.,  0.,  0.]]

    """
    if isinstance(y, (int, float)):
364
        return _C_ops.sparse_scale(x, float(y), 0.0, True)
365 366
    else:
        if y.dtype != x.dtype:
367 368
            y = _C_ops.sparse_cast(y, None, x.dtype)
        return _C_ops.sparse_multiply(x, y)
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402


@dygraph_only
def divide(x, y, name=None):
    """
    Divide two sparse tensors element-wise. Input x and y's shape should be identical and have same sparse
    type(SparseCooTensor or SparseCsrTensor).If input is SparseCooTensor, x and y's sparse_dim should be identical.
    The equation is:

    .. math::
        out = x / y

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: the result tensor.

    Examples:

    ..  code-block:: python

        import paddle
        from paddle.fluid.framework import _test_eager_guard

        paddle.device.set_device("cpu")

        with _test_eager_guard():
            x = paddle.to_tensor([[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]], 'float32')
            y = paddle.to_tensor([[0, 0, 0, -2], [0, 2, -3, 0], [2, 3, 4, 8]], 'float32')
            sparse_x = x.to_sparse_csr()
            sparse_y = y.to_sparse_csr()
403
            sparse_z = paddle.sparse.divide(sparse_x, sparse_y)
404 405 406 407 408 409 410 411
            print(sparse_z.to_dense())

        # [[ nan      , -inf.     ,  nan      , -1.       ],
        # [ nan      ,  0.       ,  1.       ,  nan      ],
        # [ 2.       , 1.66666663,  0.       ,  0.       ]]

    """
    if x.dtype in _int_dtype_:
412
        x = _C_ops.sparse_cast(x, None, core.VarDesc.VarType.FP32)
413 414

    if isinstance(y, (int, float)):
415
        return _C_ops.sparse_divide_scalar(x, float(y))
416 417
    else:
        if y.dtype != x.dtype:
418 419
            y = _C_ops.sparse_cast(y, None, x.dtype)
        return _C_ops.sparse_divide(x, y)
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445


@dygraph_only
def is_same_shape(x, y):
    """
    Return the results of shape comparison between two Tensors, check whether x.shape equal to y.shape.
    Any two type Tensor among DenseTensor/SparseCooTensor/SparseCsrTensor are supported.

    Args:
        x (Tensor): The input tensor. It can be DenseTensor/SparseCooTensor/SparseCsrTensor.
        y (Tensor): The input tensor. It can be DenseTensor/SparseCooTensor/SparseCsrTensor.

    Returns:
        bool: True for same shape and False for different shape.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.rand([2, 3, 8])
            y = paddle.rand([2, 3, 8])
            y = y.to_sparse_csr()
            z = paddle.rand([2, 5])

446
            paddle.sparse.is_same_shape(x, y)
447
            # True
448
            paddle.sparse.is_same_shape(x, z)
449 450 451 452
            # False

    """
    return x.is_same_shape(y)