# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle import _C_ops, _legacy_C_ops from paddle.fluid.framework import dygraph_only, core from paddle import in_dynamic_mode from paddle.fluid.layer_helper import LayerHelper from .unary import cast __all__ = [] _int_dtype_ = [ core.VarDesc.VarType.UINT8, core.VarDesc.VarType.INT8, core.VarDesc.VarType.INT16, core.VarDesc.VarType.INT32, core.VarDesc.VarType.INT64, core.VarDesc.VarType.BOOL, ] @dygraph_only def matmul(x, y, name=None): """ Note: This API is only supported from ``CUDA 11.0`` . Applies matrix multiplication of two Tensors. The supported input/output Tensor layout are as follows: Note: x[SparseCsrTensor] @ y[SparseCsrTensor] -> out[SparseCsrTensor] x[SparseCsrTensor] @ y[DenseTensor] -> out[DenseTensor] x[SparseCooTensor] @ y[SparseCooTensor] -> out[SparseCooTensor] x[SparseCooTensor] @ y[DenseTensor] -> out[DenseTensor] It supports backward propagation. Dimensions `x` and `y` must be >= 2D. Automatic broadcasting of Tensor is not supported. the shape of `x` should be `[*, M, K]` , and the shape of `y` should be `[*, K, N]` , where `*` is zero or more batch dimensions. Args: x (Tensor): The input tensor. It can be SparseCooTensor/SparseCsrTensor. The data type can be float32 or float64. y (Tensor): The input tensor. It can be SparseCooTensor/SparseCsrTensor/DenseTensor. The data type can be float32 or float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: Its layout is determined by that of `x` and `y` . Examples: .. code-block:: python # required: gpu import paddle # csr @ dense -> dense crows = [0, 1, 2, 3] cols = [1, 2, 0] values = [1., 2., 3.] csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, [3, 3]) # Tensor(shape=[3, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True, # crows=[0, 1, 2, 3], # cols=[1, 2, 0], # values=[1., 2., 3.]) dense = paddle.ones([3, 2]) out = paddle.sparse.matmul(csr, dense) # Tensor(shape=[3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True, # [[1., 1.], # [2., 2.], # [3., 3.]]) # coo @ dense -> dense indices = [[0, 1, 2], [1, 2, 0]] values = [1., 2., 3.] coo = paddle.sparse.sparse_coo_tensor(indices, values, [3, 3]) # Tensor(shape=[3, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True, # indices=[[0, 1, 2], # [1, 2, 0]], # values=[1., 2., 3.]) dense = paddle.ones([3, 2]) out = paddle.sparse.matmul(coo, dense) # Tensor(shape=[3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True, # [[1., 1.], # [2., 2.], # [3., 3.]]) """ return _C_ops.sparse_matmul(x, y) @dygraph_only def masked_matmul(x, y, mask, name=None): """ Note: This API is only supported from ``CUDA 11.3`` . Applies matrix multiplication of two Dense Tensors. The supported input/output Tensor layout are as follows: Note: x[DenseTensor] @ y[DenseTensor] * mask[SparseCooTensor] -> out[SparseCooTensor] x[DenseTensor] @ y[DenseTensor] * mask[SparseCsrTensor] -> out[SparseCsrTensor] It supports backward propagation. Dimensions `x` and `y` must be >= 2D. Automatic broadcasting of Tensor is not supported. the shape of `x` should be `[*, M, K]` , and the shape of `y` should be `[*, K, N]` , and the shape of `mask` should be `[*, M, N]` , where `*` is zero or more batch dimensions. Args: x (Tensor): The input tensor. It is DenseTensor. The data type can be float32 or float64. y (Tensor): The input tensor. It is DenseTensor. The data type can be float32 or float64. mask (Tensor): The mask tensor, which can be SparseCooTensor/SparseCsrTensor. It specify sparse coordinates. The data type can be float32 or float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: SparseCoo or SparseCsr, which is determined by that of `mask` . Examples: .. code-block:: python # required: gpu import paddle paddle.seed(100) # dense @ dense * csr_mask -> csr crows = [0, 2, 3, 5] cols = [1, 3, 2, 0, 1] values = [1., 2., 3., 4., 5.] dense_shape = [3, 4] mask = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape) # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True, # crows=[0, 2, 3, 5], # cols=[1, 3, 2, 0, 1], # values=[1., 2., 3., 4., 5.]) x = paddle.rand([3, 5]) y = paddle.rand([5, 4]) out = paddle.sparse.masked_matmul(x, y, mask) # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True, # crows=[0, 2, 3, 5], # cols=[1, 3, 2, 0, 1], # values=[0.98986477, 0.97800624, 1.14591956, 0.68561077, 0.94714981]) """ return _C_ops.sparse_masked_matmul(x, y, mask) @dygraph_only def mv(x, vec, name=None): """ Note: This API is only supported from ``CUDA 11.0`` . Applies matrix-vector product of Sparse Matrix 'x' and Dense vector 'vec' . The supported input/output Tensor layout are as follows: Note: x[SparseCsrTensor] @ y[DenseTensor] -> out[SparseCsrTensor] x[SparseCooTensor] @ y[DenseTensor] -> out[SparseCooTensor] It supports backward propagation. The shape of `x` should be `[M, N]` , and the shape of `y` should be `[N]` , and the shape of `out` will be `[M]` . Args: x (Tensor): The input 2D tensor. It must be SparseCooTensor/SparseCsrTensor. The data type can be float32 or float64. y (Tensor): The input 1D tensor. It must be DenseTensor vector. The data type can be float32 or float64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: 1D Tensor. Examples: .. code-block:: python # required: gpu import paddle from paddle.fluid.framework import _test_eager_guard paddle.seed(100) # csr @ dense -> dense with _test_eager_guard(): crows = [0, 2, 3, 5] cols = [1, 3, 2, 0, 1] values = [1., 2., 3., 4., 5.] dense_shape = [3, 4] csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, dense_shape) # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True, # crows=[0, 2, 3, 5], # cols=[1, 3, 2, 0, 1], # values=[1., 2., 3., 4., 5.]) vec = paddle.randn([4]) out = paddle.sparse.mv(csr, vec) # Tensor(shape=[3], dtype=float32, place=Place(gpu:0), stop_gradient=True, # [-3.85499096, -2.42975140, -1.75087738]) """ return _C_ops.sparse_mv(x, vec) def add(x, y, name=None): """ Add two sparse tensors element-wise. Input x and y's shape should be identical and have same sparse type(SparseCooTensor or SparseCsrTensor).If input is SparseCooTensor, x and y's sparse_dim should be identical. The equation is: .. math:: out = x + y Args: x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64. y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: the result tensor. Examples: .. code-block:: python import paddle from paddle.fluid.framework import _test_eager_guard paddle.device.set_device("cpu") with _test_eager_guard(): x = paddle.to_tensor([[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]], 'float32') y = paddle.to_tensor([[0, 0, 0, -2], [0, 2, -3, 0], [2, 3, 4, 8]], 'float32') sparse_x = x.to_sparse_csr() sparse_y = y.to_sparse_csr() sparse_z = paddle.sparse.add(sparse_x, sparse_y) print(sparse_z.to_dense()) # [[ 0., -1., 0., 0.], # [ 0., 2., -6., 0.], # [ 6., 8., 4., 8.]] """ if y.dtype != x.dtype: y = cast(y, None, x.dtype) if in_dynamic_mode(): return _C_ops.sparse_add(x, y) else: op_type = 'sparse_add' inputs = {'x': x, 'y': y} helper = LayerHelper(op_type) out = helper.create_sparse_variable_for_type_inference(x.dtype) helper.append_op(type=op_type, inputs=inputs, outputs={'out': out}, attrs={}) return out @dygraph_only def subtract(x, y, name=None): """ Subtract two sparse tensors element-wise. Input x and y's shape should be identical and have same sparse type(SparseCooTensor or SparseCsrTensor).If input is SparseCooTensor, x and y's sparse_dim should be identical. The equation is: .. math:: out = x - y Args: x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64. y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: the result tensor. Examples: .. code-block:: python import paddle from paddle.fluid.framework import _test_eager_guard paddle.device.set_device("cpu") with _test_eager_guard(): x = paddle.to_tensor([[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]], 'float32') y = paddle.to_tensor([[0, 0, 0, -2], [0, 2, -3, 0], [2, 3, 4, 8]], 'float32') sparse_x = x.to_sparse_csr() sparse_y = y.to_sparse_csr() sparse_z = paddle.sparse.subtract(sparse_x, sparse_y) print(sparse_z.to_dense()) # [[ 0., -1., 0., 4.], # [ 0., -2., 0., 0.], # [ 2., 2., -4., -8.]] """ if y.dtype != x.dtype: y = _C_ops.sparse_cast(y, None, x.dtype) return _C_ops.sparse_subtract(x, y) @dygraph_only def multiply(x, y, name=None): """ Multiply two sparse tensors element-wise. Input x and y's shape should be identical and have same sparse type(SparseCooTensor or SparseCsrTensor).If input is SparseCooTensor, x and y's sparse_dim should be identical. The equation is: .. math:: out = x * y Args: x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64. y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: the result tensor. Examples: .. code-block:: python import paddle from paddle.fluid.framework import _test_eager_guard paddle.device.set_device("cpu") with _test_eager_guard(): x = paddle.to_tensor([[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]], 'float32') y = paddle.to_tensor([[0, 0, 0, -2], [0, 2, -3, 0], [2, 3, 4, 8]], 'float32') sparse_x = x.to_sparse_csr() sparse_y = y.to_sparse_csr() sparse_z = paddle.sparse.multiply(sparse_x, sparse_y) print(sparse_z.to_dense()) # [[ 0., 0., 0., -4.], # [ 0., 0., 9., 0.], # [ 8., 15., 0., 0.]] """ if isinstance(y, (int, float)): return _C_ops.sparse_scale(x, float(y), 0.0, True) else: if y.dtype != x.dtype: y = _C_ops.sparse_cast(y, None, x.dtype) return _C_ops.sparse_multiply(x, y) @dygraph_only def divide(x, y, name=None): """ Divide two sparse tensors element-wise. Input x and y's shape should be identical and have same sparse type(SparseCooTensor or SparseCsrTensor).If input is SparseCooTensor, x and y's sparse_dim should be identical. The equation is: .. math:: out = x / y Args: x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64. y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Returns: Tensor: the result tensor. Examples: .. code-block:: python import paddle from paddle.fluid.framework import _test_eager_guard paddle.device.set_device("cpu") with _test_eager_guard(): x = paddle.to_tensor([[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]], 'float32') y = paddle.to_tensor([[0, 0, 0, -2], [0, 2, -3, 0], [2, 3, 4, 8]], 'float32') sparse_x = x.to_sparse_csr() sparse_y = y.to_sparse_csr() sparse_z = paddle.sparse.divide(sparse_x, sparse_y) print(sparse_z.to_dense()) # [[ nan , -inf. , nan , -1. ], # [ nan , 0. , 1. , nan ], # [ 2. , 1.66666663, 0. , 0. ]] """ if x.dtype in _int_dtype_: x = _C_ops.sparse_cast(x, None, core.VarDesc.VarType.FP32) if isinstance(y, (int, float)): return _C_ops.sparse_divide_scalar(x, float(y)) else: if y.dtype != x.dtype: y = _C_ops.sparse_cast(y, None, x.dtype) return _C_ops.sparse_divide(x, y) @dygraph_only def is_same_shape(x, y): """ Return the results of shape comparison between two Tensors, check whether x.shape equal to y.shape. Any two type Tensor among DenseTensor/SparseCooTensor/SparseCsrTensor are supported. Args: x (Tensor): The input tensor. It can be DenseTensor/SparseCooTensor/SparseCsrTensor. y (Tensor): The input tensor. It can be DenseTensor/SparseCooTensor/SparseCsrTensor. Returns: bool: True for same shape and False for different shape. Examples: .. code-block:: python import paddle x = paddle.rand([2, 3, 8]) y = paddle.rand([2, 3, 8]) y = y.to_sparse_csr() z = paddle.rand([2, 5]) paddle.sparse.is_same_shape(x, y) # True paddle.sparse.is_same_shape(x, z) # False """ return x.is_same_shape(y)