layer.h 9.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

X
Xin Pan 已提交
17 18 19 20 21 22 23
// clang-format off
#include "paddle/fluid/framework/python_headers.h"
// clang-format on

#include <map>     // NOLINT
#include <string>  // NOLINT
#include <vector>  // NOLINT
M
minqiyang 已提交
24
#include <memory>  // NOLINT
M
minqiyang 已提交
25

26 27 28 29
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"
M
minqiyang 已提交
30
#include "paddle/fluid/platform/device_context.h"
M
minqiyang 已提交
31
#include "paddle/fluid/operators/math/math_function.h"
32

M
minqiyang 已提交
33 34
#include "paddle/fluid/imperative/type_defs.h"

35 36 37
namespace paddle {
namespace imperative {

M
minqiyang 已提交
38 39
class VarBase;

X
Xin Pan 已提交
40 41
namespace py = ::pybind11;

X
Xin Pan 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
class PreparedOp {
 public:
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             framework::OperatorWithKernel::OpKernelFunc func,
             platform::DeviceContext* dev_ctx)
      : op(op), ctx(ctx), func(func), dev_ctx(dev_ctx) {}

  static PreparedOp Prepare(const framework::RuntimeContext& ctx,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto* dev_ctx = pool.Get(place);

    // check if op[type] has kernel registered.
    auto& all_op_kernels = op.AllOpKernels();
    auto kernels_iter = all_op_kernels.find(op.Type());
    if (kernels_iter == all_op_kernels.end()) {
      PADDLE_THROW(
          "There are no kernels which are registered in the %s operator.",
          op.Type());
    }

    framework::OperatorWithKernel::OpKernelMap& kernels = kernels_iter->second;

    auto expected_kernel_key = op.GetExpectedKernelType(
X
Xin Pan 已提交
68
        framework::ExecutionContext(op, framework::Scope(), *dev_ctx, ctx));
X
Xin Pan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

    auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
    // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
    if (kernel_iter == kernels.end() &&
        expected_kernel_key.library_type_ == framework::LibraryType::kMKLDNN) {
      VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
      expected_kernel_key.library_type_ = framework::LibraryType::kPlain;
      expected_kernel_key.data_layout_ = framework::DataLayout::kAnyLayout;
      kernel_iter = kernels.find(expected_kernel_key);
    }
#endif
    if (kernel_iter == kernels.end()) {
      PADDLE_THROW("op %s does not have kernel for %s", op.Type(),
                   KernelTypeToString(expected_kernel_key));
    }
    return PreparedOp(op, ctx, kernel_iter->second, dev_ctx);
  }

M
minqiyang 已提交
89 90
  inline platform::DeviceContext* GetDeviceContext() const { return dev_ctx; }

X
Xin Pan 已提交
91 92 93 94 95
  const framework::OperatorBase& op;
  const framework::RuntimeContext& ctx;
  framework::OperatorWithKernel::OpKernelFunc func;
  platform::DeviceContext* dev_ctx;
};
X
polish  
Xin Pan 已提交
96

97 98
class OpBase;

M
minqiyang 已提交
99 100 101 102 103
/* The wrapper for Variable which holds a Variable and a VarBase of its
 * gradient. This object should be managed totally by Python intepreter.
 *
 * Nearly all interface should be implemented in C++.
 */
104 105
class VarBase {
 public:
M
minqiyang 已提交
106
  VarBase() : VarBase(new framework::Variable(), new VarBase(true)) {}
X
polish  
Xin Pan 已提交
107

M
minqiyang 已提交
108 109 110 111
  explicit VarBase(bool stop_gradient)
      : VarBase(new framework::Variable(),
                stop_gradient ? nullptr : new VarBase(true), stop_gradient) {}

M
minqiyang 已提交
112
  VarBase(framework::Variable* var, VarBase* grad)
M
minqiyang 已提交
113 114 115 116
      : VarBase(var, grad, false) {}

 private:
  VarBase(framework::Variable* var, VarBase* grad, bool stop_gradient)
117 118
      : name_(),
        var_desc_(nullptr),
X
polish  
Xin Pan 已提交
119 120
        var_(var),
        grads_(grad),
121
        block_(nullptr),
122
        persistable_(false),
X
Xin Pan 已提交
123 124
        stop_gradient_(stop_gradient),
        pre_op_(nullptr),
125
        pre_op_out_name_(),
M
minqiyang 已提交
126
        pre_op_out_idx_(-1) {}
127

M
minqiyang 已提交
128
 public:
M
minqiyang 已提交
129
  virtual ~VarBase() {
130
    if (block_ && !persistable_) {
131 132 133
      block_->RemoveVar(name_);
    }

M
minqiyang 已提交
134 135
    if (var_) {
      delete var_;
136
      var_ = nullptr;
M
minqiyang 已提交
137 138 139 140
    }

    if (grads_) {
      delete grads_;
141
      grads_ = nullptr;
M
minqiyang 已提交
142
    }
143 144 145

    pre_op_ = nullptr;
    pre_op_out_idx_ = -1;
M
minqiyang 已提交
146
  }
147

M
minqiyang 已提交
148 149
  inline OpBase* PreOp() const { return pre_op_; }
  inline int PreOpOutIdx() const { return pre_op_out_idx_; }
X
Xin Pan 已提交
150

M
minqiyang 已提交
151 152 153 154
  inline void SetStopGradient(bool stop_gradient) {
    stop_gradient_ = stop_gradient;
  }
  inline bool IsStopGradient() const { return stop_gradient_; }
155

M
minqiyang 已提交
156 157
  void RunBackward();

158 159 160 161 162 163 164 165
  inline void ResetPreOp(OpBase* op) {
    if (op == pre_op_) {
      // clear pre_op info when op equals to var's pre_op
      pre_op_ = nullptr;
      pre_op_out_idx_ = -1;
    }
  }

X
Xin Pan 已提交
166
  void TrackPreOp(OpBase* pre_op, const std::string& pre_op_out_name,
M
minqiyang 已提交
167
                  int pre_op_out_idx, bool pre_op_stop_gradient) {
X
Xin Pan 已提交
168 169 170
    pre_op_ = pre_op;
    pre_op_out_name_ = pre_op_out_name;
    pre_op_out_idx_ = pre_op_out_idx;
M
minqiyang 已提交
171 172 173
    if (pre_op_stop_gradient) {
      stop_gradient_ = pre_op_stop_gradient;
    }
X
Xin Pan 已提交
174 175
  }

M
minqiyang 已提交
176 177 178 179 180 181 182 183 184 185
  void ClearGradient() {
    VLOG(1) << "clear gradient of " << var_desc_->Name();
    if (grads_ && grads_->var_ && grads_->var_->IsInitialized()) {
      auto grads_t = grads_->var_->GetMutable<framework::LoDTensor>();
      operators::math::set_constant(
          *(platform::DeviceContextPool::Instance().Get(
              grads_->var_->Get<framework::LoDTensor>().place())),
          grads_t, 0.0);
    }
  }
X
Xin Pan 已提交
186

M
minqiyang 已提交
187
  framework::LoDTensor& GradValue();
188

M
minqiyang 已提交
189 190
  std::unique_ptr<VarBase> NewVarBase(const platform::Place& dst_place,
                                      const bool blocking) const;
M
minqiyang 已提交
191

M
minqiyang 已提交
192 193 194 195 196 197 198
  inline std::string GradName() const {
    PADDLE_ENFORCE(
        var_desc_,
        "Couldn't get gradient variable's name, please call backward() first");
    return string::Sprintf("%s@IGrad", var_desc_->Name());
  }

199
  std::string name_;
200
  framework::VarDesc* var_desc_;
M
minqiyang 已提交
201

M
minqiyang 已提交
202 203
  framework::Variable* var_;
  VarBase* grads_;
204

205
  framework::BlockDesc* block_;
206
  bool persistable_;
207

X
Xin Pan 已提交
208
 private:
209
  bool stop_gradient_;
X
Xin Pan 已提交
210 211 212
  OpBase* pre_op_;
  std::string pre_op_out_name_;
  int pre_op_out_idx_;
213 214
};

M
minqiyang 已提交
215 216 217
/* The wrapper for OpDesc which holds a OpDesc and a OpDesc of its
 * gradient. This object should be managed totally by Python intepreter.
 */
218
class PYBIND11_HIDDEN OpBase {
219
 public:
X
Xin Pan 已提交
220 221 222
  OpBase()
      : op_desc_(nullptr),
        forward_id_(-1),
M
minqiyang 已提交
223
        backward_id_(-1),
M
minqiyang 已提交
224
        trace_id_(-1),
225 226
        place_(platform::CPUPlace()),
        backward_hooks_() {}
227 228

  virtual ~OpBase() {
M
minqiyang 已提交
229 230
    // TODO(minqiyang): remove op_desc from block_desc in tracer
    //
231 232 233 234 235
    // reset all output vars' pre op
    for (auto iter : output_vars_) {
      for (VarBase* var : iter.second) {
        var->ResetPreOp(this);
      }
X
Xin Pan 已提交
236
    }
237

238 239 240 241
    // release resource
    for (framework::OpDesc* desc : grad_op_descs_) {
      delete desc;
    }
242 243
  }

X
Xin Pan 已提交
244
  std::map<std::string, std::vector<VarBase*>> ApplyGrad();
245

246 247 248 249
  void RegisterBackwardHooks(const py::object& callable);

  void InvokeBackwardHooks();

X
polish  
Xin Pan 已提交
250 251
  // One of `op_desc_` or `forward_id_` is set, not both.
  // For pure python PyLayer, use `forward_id_`, otherwise, use op_desc_.
252
  framework::OpDesc* op_desc_;
X
Xin Pan 已提交
253
  int forward_id_;
X
polish  
Xin Pan 已提交
254

X
Xin Pan 已提交
255
  // When has backward, one of `grad_op_descs_` or `backward_id_` is set,
X
polish  
Xin Pan 已提交
256
  // not both.
X
polish  
Xin Pan 已提交
257
  // Note: each fwd op corresponds to a vector of bwd ops.
X
Xin Pan 已提交
258
  std::vector<framework::OpDesc*> grad_op_descs_;
X
Xin Pan 已提交
259
  int backward_id_;
M
minqiyang 已提交
260
  int trace_id_;
X
Xin Pan 已提交
261

P
Paddle CI 已提交
262
  platform::Place place_;
M
minqiyang 已提交
263

M
minqiyang 已提交
264 265 266
  VarBasePtrMap input_vars_;
  VarBasePtrMap output_vars_;
  OpBasePtrMap pre_ops_;
X
Xin Pan 已提交
267
  std::map<std::string, std::vector<int>> pre_ops_out_idx_;
268

X
polish  
Xin Pan 已提交
269
  // Inputs to a vector of bwd ops.
X
Xin Pan 已提交
270
  std::vector<framework::VariableValueMap> grad_input_vars_;
X
polish  
Xin Pan 已提交
271
  // Outputs to a vector of bwd ops.
X
Xin Pan 已提交
272
  std::vector<framework::VariableValueMap> grad_output_vars_;
X
polish  
Xin Pan 已提交
273

274
  framework::BlockDesc* block_;
275 276

  std::vector<py::object> backward_hooks_;
277 278 279 280 281 282 283 284 285 286
};

class Layer {
 public:
  virtual ~Layer() {}

  virtual std::vector<VarBase> Forward(const std::vector<VarBase>& inputs) {
    std::vector<VarBase> vars;
    return vars;
  }
X
Xin Pan 已提交
287
};
288

X
Xin Pan 已提交
289 290 291 292
class PyLayer {
 public:
  virtual ~PyLayer() {}

X
polish  
Xin Pan 已提交
293 294
  static const char* kFwdInp;
  static const char* kFwdOut;
X
Xin Pan 已提交
295

X
Xin Pan 已提交
296
  static void RegisterFunc(int func_id, const py::object& py_func);
X
Xin Pan 已提交
297

X
polish  
Xin Pan 已提交
298 299
  static int NumFuncs();

X
Xin Pan 已提交
300
  static std::vector<VarBase*> Apply(int func_id,
X
Xin Pan 已提交
301 302
                                     const std::vector<VarBase*>& inputs);

X
polish  
Xin Pan 已提交
303 304
  static std::vector<framework::Variable*> ApplyGrad(
      int func_id, const std::vector<framework::Variable*>& inputs);
305

X
polish  
Xin Pan 已提交
306 307 308
 private:
  static std::vector<framework::Variable*> CallPythonFunc(
      const py::object& callable, const std::vector<framework::Variable*>& ins);
309 310 311 312
};

}  // namespace imperative
}  // namespace paddle