data_layout_transform.cc 6.6 KB
Newer Older
1
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2 3 4 5 6 7 8 9 10 11 12 13
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/data_layout_transform.h"
16
#include <string>
17
#include <vector>
18

Y
Yi Wang 已提交
19
#include "paddle/fluid/operators/math/math_function.h"
M
mozga-intel 已提交
20 21
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
22
#include "paddle/fluid/platform/mkldnn_reuse.h"
M
mozga-intel 已提交
23
#endif
24 25 26 27

namespace paddle {
namespace framework {

28 29 30 31 32 33 34 35 36 37 38 39
std::vector<int> GetAxis(const DataLayout& from, const DataLayout& to) {
  PADDLE_ENFORCE_NE(from, to,
                    "layout transform should transform different layout");
  if (from == DataLayout::kNCHW && to == DataLayout::kNHWC) {
    return {0, 2, 3, 1};
  } else if (from == DataLayout::kNHWC && to == DataLayout::kNCHW) {
    return {0, 3, 1, 2};
  } else {
    PADDLE_THROW("unsupported transform");
  }
}

40 41 42 43 44 45 46 47 48 49 50
struct CastDataLayout {
  CastDataLayout(const platform::DeviceContext* ctx,
                 const std::vector<int>& axis, const framework::Tensor& in,
                 framework::Tensor* out)
      : in_(in), out_(out), ctx_(ctx), axis_(axis) {}
  const framework::Tensor in_;
  framework::Tensor* out_;
  const platform::DeviceContext* ctx_;
  const std::vector<int> axis_;

  template <typename T>
D
dzhwinter 已提交
51
  void apply() {
52 53 54 55 56 57 58 59 60 61 62 63
    auto place = ctx_->GetPlace();

    if (platform::is_cpu_place(place)) {
      operators::math::Transpose<platform::CPUDeviceContext, T, 4> trans4;
      auto* context = static_cast<const platform::CPUDeviceContext*>(ctx_);
      trans4(*context, in_, out_, axis_);
    } else {
      PADDLE_THROW("Unsupport CPU <-> GPU!");
    }
  }
};

64 65 66
void TransDataLayout(const OpKernelType& kernel_type_for_var,
                     const OpKernelType& expected_kernel_type, const Tensor& in,
                     Tensor* out) {
67
  PADDLE_ENFORCE(
68 69
      platform::places_are_same_class(kernel_type_for_var.place_,
                                      expected_kernel_type.place_),
70 71
      "TransDataLayout only support DataLayout transform on same place!");

72 73 74
  PADDLE_ENFORCE(arity(in.dims()) == 4, "Input Arity only support 4!");

  auto& pool = platform::DeviceContextPool::Instance();
75

76
  auto src_dim = in.dims();
77 78
  std::vector<int64_t> dst_dim;

79 80
  auto axis = GetAxis(kernel_type_for_var.data_layout_,
                      expected_kernel_type.data_layout_);
81 82 83 84 85
  dst_dim.resize(axis.size());
  for (size_t i = 0; i < axis.size(); i++) {
    dst_dim[i] = src_dim[axis[i]];
  }

86 87
  out->Resize(make_ddim(dst_dim));
  out->mutable_data(expected_kernel_type.place_, in.type());
88

89
  framework::VisitDataType(
Y
Yu Yang 已提交
90
      in.type(),
91
      CastDataLayout(pool.Get(expected_kernel_type.place_), axis, in, out));
92

93
  out->set_layout(expected_kernel_type.data_layout_);
94 95
}

M
mozga-intel 已提交
96 97 98 99 100 101 102 103 104 105
#ifdef PADDLE_WITH_MKLDNN
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;

void* GetDataFromTensor(const Tensor& tensor, mkldnn::memory::data_type type) {
  switch (type) {
    case mkldnn::memory::data_type::f32:
      return platform::to_void_cast(tensor.data<float>());
    case mkldnn::memory::data_type::s8:
Y
Yu Yang 已提交
106
      return platform::to_void_cast(tensor.data<int8_t>());
M
mozga-intel 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    case mkldnn::memory::data_type::u8:
      return platform::to_void_cast(tensor.data<unsigned char>());
    case mkldnn::memory::data_type::s16:
      return platform::to_void_cast(tensor.data<int16_t>());
    case mkldnn::memory::data_type::s32:
      return platform::to_void_cast(tensor.data<int32_t>());
    default:
      PADDLE_THROW("wrong mkldnn type provided");
  }
}
#endif

void TransDataLayoutFromMKLDNN(const OpKernelType& kernel_type_for_var,
                               const OpKernelType& expected_kernel_type,
                               const Tensor& in, Tensor* out) {
  auto in_layout = kernel_type_for_var.data_layout_;
  auto out_layout = expected_kernel_type.data_layout_;

  PADDLE_ENFORCE(
      in_layout == DataLayout::kMKLDNN && out_layout != DataLayout::kMKLDNN,
      "TransDataLayoutFromMKLDNN only supports transform from MKLDNN to "
      "non-MKLDNN");

#ifdef PADDLE_WITH_MKLDNN
  PADDLE_ENFORCE(in.format() != memory::format::format_undef &&
                     in.format() != memory::format::any,
                 "Input tensor should have specified memory format");

  // Set default as NCHW in case not specified
  out_layout =
      out_layout == DataLayout::kAnyLayout ? DataLayout::kNCHW : out_layout;

139 140 141 142 143
  auto& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = dynamic_cast<platform::MKLDNNDeviceContext*>(
      pool.Get(expected_kernel_type.place_));
  auto& cpu_engine = dev_ctx->GetEngine();

M
mozga-intel 已提交
144 145 146 147 148
  std::vector<int> in_tz = paddle::framework::vectorize2int(in.dims());
  std::vector<int> out_tz = in_tz;

  memory::data_type in_type = ToMKLDNNDataType(in.type());
  PADDLE_ENFORCE(in_type != memory::data_type::data_undef,
Y
Yu Yang 已提交
149
                 "Input tensor type is not supported: %s", in.type());
M
mozga-intel 已提交
150

151 152 153 154
  auto in_format = platform::MKLDNNFormatForSize(in_tz.size(), in.format());
  auto out_format =
      platform::MKLDNNFormatForSize(in_tz.size(), ToMKLDNNFormat(out_layout));

M
mozga-intel 已提交
155 156 157
  // output tensor has the same dims as input. Reorder don't change dims
  out->Resize(in.dims());

158
  if (in_format != out_format) {
159
    void* in_data = GetDataFromTensor(in, in_type);
160 161
    const std::string key = platform::ReorderMKLDNNHandler::GetHash(
        in_tz, in_format, out_format, std::to_string(in_type));
M
mozga-intel 已提交
162

163 164
    platform::ReorderMKLDNNHandler handler(in_tz, in.type(), in_type, *dev_ctx,
                                           cpu_engine, key);
M
mozga-intel 已提交
165

166 167 168 169 170 171 172 173 174
    auto reorder_src_memory_p = handler.AcquireSrcMemory(in_format, in_data);
    auto reorder_dst_memory_p =
        handler.AcquireDstMemory(out, out_format, expected_kernel_type.place_);
    auto reorder_p =
        handler.AcquireReorder(reorder_dst_memory_p, reorder_src_memory_p);

    std::vector<mkldnn::primitive> pipeline;
    pipeline.push_back(*reorder_p);
    mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
175 176 177
  } else {
    out->ShareDataWith(in);
  }
M
mozga-intel 已提交
178
  out->set_layout(out_layout);
179 180
  // reset format since the out tensor will be feed to non-MKLDNN OPkernel
  out->set_format(memory::format::format_undef);
M
mozga-intel 已提交
181 182 183
#endif
}

184 185
}  // namespace framework
}  // namespace paddle