analyzer_dam_tester.cc 8.3 KB
Newer Older
Z
Zhen Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tests/api/tester_helper.h"

Z
ZhenWang 已提交
17
DEFINE_int32(max_turn_num, 9,
Z
ZhenWang 已提交
18 19
             "The max turn number: 1 for the small and 9 for the normal.");

Z
Zhen Wang 已提交
20 21 22
namespace paddle {
namespace inference {
using contrib::AnalysisConfig;
Z
ZhenWang 已提交
23 24 25

constexpr int32_t kMaxTurnLen = 50;

Z
Zhen Wang 已提交
26 27 28
static std::vector<float> result_data;

struct DataRecord {
Z
ZhenWang 已提交
29 30 31
  std::vector<std::vector<int64_t>> *turns;
  std::vector<std::vector<float>> *turns_mask;
  std::vector<std::vector<int64_t>> response;     // response data : 1
Z
Zhen Wang 已提交
32 33 34 35
  std::vector<std::vector<float>> response_mask;  // response mask data : 1
  size_t batch_iter{0};
  size_t batch_size{1};
  size_t num_samples;  // total number of samples
Z
ZhenWang 已提交
36 37 38 39 40 41 42 43

  DataRecord() {
    turns = new std::vector<std::vector<
        int64_t>>[FLAGS_max_turn_num];  // turns data : FLAGS_max_turn_num
    turns_mask = new std::vector<std::vector<
        float>>[FLAGS_max_turn_num];  // turns mask data : FLAGS_max_turn_num
  }

Z
Zhen Wang 已提交
44
  explicit DataRecord(const std::string &path, int batch_size = 1)
Z
ZhenWang 已提交
45 46
      : DataRecord() {
    this->batch_size = batch_size;
Z
Zhen Wang 已提交
47 48
    Load(path);
  }
Z
ZhenWang 已提交
49 50 51 52 53 54

  ~DataRecord() {
    delete[] turns;
    delete[] turns_mask;
  }

Z
Zhen Wang 已提交
55 56 57 58 59
  DataRecord NextBatch() {
    DataRecord data;
    size_t batch_end = batch_iter + batch_size;
    // NOTE skip the final batch, if no enough data is provided.
    if (batch_end <= response.size()) {
Z
ZhenWang 已提交
60
      for (int i = 0; i < FLAGS_max_turn_num; ++i) {
Z
Zhen Wang 已提交
61 62 63
        data.turns[i].assign(turns[i].begin() + batch_iter,
                             turns[i].begin() + batch_end);
      }
Z
ZhenWang 已提交
64
      for (int i = 0; i < FLAGS_max_turn_num; ++i) {
Z
Zhen Wang 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78
        data.turns_mask[i].assign(turns_mask[i].begin() + batch_iter,
                                  turns_mask[i].begin() + batch_end);
      }
      data.response.assign(response.begin() + batch_iter,
                           response.begin() + batch_end);
      data.response_mask.assign(response_mask.begin() + batch_iter,
                                response_mask.begin() + batch_end);
      CHECK(!data.response.empty());
      CHECK(!data.response_mask.empty());
      CHECK_EQ(data.response.size(), data.response_mask.size());
    }
    batch_iter += batch_size;
    return data;
  }
Z
ZhenWang 已提交
79

Z
Zhen Wang 已提交
80 81 82 83 84 85 86 87 88
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    size_t num_lines = 0;
    result_data.clear();
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ',', &data);
Z
ZhenWang 已提交
89
      CHECK_EQ(data.size(), (size_t)(2 * FLAGS_max_turn_num + 3));
Z
Zhen Wang 已提交
90
      // load turn data
Z
ZhenWang 已提交
91 92
      std::vector<int64_t> turns_tmp[FLAGS_max_turn_num];
      for (int i = 0; i < FLAGS_max_turn_num; ++i) {
Z
Zhen Wang 已提交
93 94 95 96
        split_to_int64(data[i], ' ', &turns_tmp[i]);
        turns[i].push_back(std::move(turns_tmp[i]));
      }
      // load turn_mask data
Z
ZhenWang 已提交
97 98 99
      std::vector<float> turns_mask_tmp[FLAGS_max_turn_num];
      for (int i = 0; i < FLAGS_max_turn_num; ++i) {
        split_to_float(data[FLAGS_max_turn_num + i], ' ', &turns_mask_tmp[i]);
Z
Zhen Wang 已提交
100 101 102 103
        turns_mask[i].push_back(std::move(turns_mask_tmp[i]));
      }
      // load response data
      std::vector<int64_t> response_tmp;
Z
ZhenWang 已提交
104
      split_to_int64(data[2 * FLAGS_max_turn_num], ' ', &response_tmp);
Z
Zhen Wang 已提交
105 106 107
      response.push_back(std::move(response_tmp));
      // load response_mask data
      std::vector<float> response_mask_tmp;
Z
ZhenWang 已提交
108
      split_to_float(data[2 * FLAGS_max_turn_num + 1], ' ', &response_mask_tmp);
Z
Zhen Wang 已提交
109 110 111
      response_mask.push_back(std::move(response_mask_tmp));
      // load result data
      float result_tmp;
Z
ZhenWang 已提交
112
      result_tmp = std::stof(data[2 * FLAGS_max_turn_num + 2]);
Z
Zhen Wang 已提交
113 114 115 116 117 118 119 120
      result_data.push_back(result_tmp);
    }
    num_samples = num_lines;
  }
};

void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                   int batch_size) {
Z
ZhenWang 已提交
121 122
  PaddleTensor turns_tensor[FLAGS_max_turn_num];
  PaddleTensor turns_mask_tensor[FLAGS_max_turn_num];
Z
Zhen Wang 已提交
123 124 125 126 127 128 129
  PaddleTensor response_tensor;
  PaddleTensor response_mask_tensor;
  std::string turn_pre = "turn_";
  std::string turn_mask_pre = "turn_mask_";

  auto one_batch = data->NextBatch();
  int size = one_batch.response[0].size();
Z
ZhenWang 已提交
130
  CHECK_EQ(size, kMaxTurnLen);
Z
Zhen Wang 已提交
131
  // turn tensor assignment
Z
ZhenWang 已提交
132
  for (int i = 0; i < FLAGS_max_turn_num; ++i) {
Z
Zhen Wang 已提交
133 134 135 136 137 138
    turns_tensor[i].name = turn_pre + std::to_string(i);
    turns_tensor[i].shape.assign({batch_size, size, 1});
    turns_tensor[i].dtype = PaddleDType::INT64;
    TensorAssignData<int64_t>(&turns_tensor[i], one_batch.turns[i]);
  }
  // turn mask tensor assignment
Z
ZhenWang 已提交
139
  for (int i = 0; i < FLAGS_max_turn_num; ++i) {
Z
Zhen Wang 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    turns_mask_tensor[i].name = turn_mask_pre + std::to_string(i);
    turns_mask_tensor[i].shape.assign({batch_size, size, 1});
    turns_mask_tensor[i].dtype = PaddleDType::FLOAT32;
    TensorAssignData<float>(&turns_mask_tensor[i], one_batch.turns_mask[i]);
  }
  // response tensor assignment
  response_tensor.name = "response";
  response_tensor.shape.assign({batch_size, size, 1});
  response_tensor.dtype = PaddleDType::INT64;
  TensorAssignData<int64_t>(&response_tensor, one_batch.response);
  // response mask tensor assignment
  response_mask_tensor.name = "response_mask";
  response_mask_tensor.shape.assign({batch_size, size, 1});
  response_mask_tensor.dtype = PaddleDType::FLOAT32;
  TensorAssignData<float>(&response_mask_tensor, one_batch.response_mask);

  // Set inputs.
Z
ZhenWang 已提交
157
  for (int i = 0; i < FLAGS_max_turn_num; ++i) {
Z
Zhen Wang 已提交
158 159
    input_slots->push_back(std::move(turns_tensor[i]));
  }
Z
ZhenWang 已提交
160
  for (int i = 0; i < FLAGS_max_turn_num; ++i) {
Z
Zhen Wang 已提交
161 162 163 164 165 166 167
    input_slots->push_back(std::move(turns_mask_tensor[i]));
  }
  input_slots->push_back(std::move(response_tensor));
  input_slots->push_back(std::move(response_mask_tensor));
}

void SetConfig(contrib::AnalysisConfig *cfg) {
Z
ZhenWang 已提交
168 169
  cfg->prog_file = FLAGS_infer_model + "/__model__";
  cfg->param_file = FLAGS_infer_model + "/param";
Z
Zhen Wang 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
  cfg->use_gpu = false;
  cfg->device = 0;
  cfg->specify_input_name = true;
  cfg->enable_ir_optim = true;
}

void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
  std::vector<PaddleTensor> input_slots;
  int test_batch_num =
      FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1;
  LOG(INFO) << "The number of samples to be test: "
            << test_batch_num * FLAGS_batch_size;
  for (int bid = 0; bid < test_batch_num; ++bid) {
    input_slots.clear();
    PrepareInputs(&input_slots, &data, FLAGS_batch_size);
    (*inputs).emplace_back(input_slots);
  }
}

// Easy for profiling independently.
TEST(Analyzer_dam, profile) {
  contrib::AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<PaddleTensor> outputs;
  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
198 199
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                 input_slots_all, &outputs, FLAGS_num_threads);
Z
Zhen Wang 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

  if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
    PADDLE_ENFORCE_GT(outputs.size(), 0);
    size_t size = GetSize(outputs[0]);
    PADDLE_ENFORCE_GT(size, 0);
    float *result = static_cast<float *>(outputs[0].data.data());
    for (size_t i = 0; i < size; i++) {
      EXPECT_NEAR(result[i], result_data[i], 1e-3);
    }
  }
}

// Check the fuse status
TEST(Analyzer_dam, fuse_statis) {
  contrib::AnalysisConfig cfg;
  SetConfig(&cfg);

T
Tao Luo 已提交
217 218 219 220 221
  int num_ops;
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
  auto fuse_statis = GetFuseStatis(
      static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
  ASSERT_TRUE(fuse_statis.count("fc_fuse"));
Z
Zhen Wang 已提交
222 223 224 225 226 227 228 229 230 231
}

// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_dam, compare) {
  contrib::AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);

T
Tao Luo 已提交
232 233
  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
Z
Zhen Wang 已提交
234 235 236 237
}

}  // namespace inference
}  // namespace paddle