analyzer_dam_tester.cc 7.9 KB
Newer Older
Z
Zhen Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tests/api/tester_helper.h"

namespace paddle {
namespace inference {
using contrib::AnalysisConfig;
20
#define MAX_TURN_NUM 1
Z
Zhen Wang 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
#define MAX_TURN_LEN 50
static std::vector<float> result_data;

struct DataRecord {
  std::vector<std::vector<int64_t>>
      turns[MAX_TURN_NUM];  // turns data : MAX_TURN_NUM
  std::vector<std::vector<float>>
      turns_mask[MAX_TURN_NUM];                // turns mask data : MAX_TURN_NUM
  std::vector<std::vector<int64_t>> response;  // response data : 1
  std::vector<std::vector<float>> response_mask;  // response mask data : 1
  size_t batch_iter{0};
  size_t batch_size{1};
  size_t num_samples;  // total number of samples
  DataRecord() = default;
  explicit DataRecord(const std::string &path, int batch_size = 1)
      : batch_size(batch_size) {
    Load(path);
  }
  DataRecord NextBatch() {
    DataRecord data;
    size_t batch_end = batch_iter + batch_size;
    // NOTE skip the final batch, if no enough data is provided.
    if (batch_end <= response.size()) {
      for (int i = 0; i < MAX_TURN_NUM; ++i) {
        data.turns[i].assign(turns[i].begin() + batch_iter,
                             turns[i].begin() + batch_end);
      }
      for (int i = 0; i < MAX_TURN_NUM; ++i) {
        data.turns_mask[i].assign(turns_mask[i].begin() + batch_iter,
                                  turns_mask[i].begin() + batch_end);
      }
      data.response.assign(response.begin() + batch_iter,
                           response.begin() + batch_end);
      data.response_mask.assign(response_mask.begin() + batch_iter,
                                response_mask.begin() + batch_end);
      CHECK(!data.response.empty());
      CHECK(!data.response_mask.empty());
      CHECK_EQ(data.response.size(), data.response_mask.size());
    }
    batch_iter += batch_size;
    return data;
  }
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    size_t num_lines = 0;
    result_data.clear();
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ',', &data);
T
Tao Luo 已提交
72
      CHECK_EQ(data.size(), (size_t)(2 * MAX_TURN_NUM + 3));
Z
Zhen Wang 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
      // load turn data
      std::vector<int64_t> turns_tmp[MAX_TURN_NUM];
      for (int i = 0; i < MAX_TURN_NUM; ++i) {
        split_to_int64(data[i], ' ', &turns_tmp[i]);
        turns[i].push_back(std::move(turns_tmp[i]));
      }
      // load turn_mask data
      std::vector<float> turns_mask_tmp[MAX_TURN_NUM];
      for (int i = 0; i < MAX_TURN_NUM; ++i) {
        split_to_float(data[MAX_TURN_NUM + i], ' ', &turns_mask_tmp[i]);
        turns_mask[i].push_back(std::move(turns_mask_tmp[i]));
      }
      // load response data
      std::vector<int64_t> response_tmp;
      split_to_int64(data[2 * MAX_TURN_NUM], ' ', &response_tmp);
      response.push_back(std::move(response_tmp));
      // load response_mask data
      std::vector<float> response_mask_tmp;
      split_to_float(data[2 * MAX_TURN_NUM + 1], ' ', &response_mask_tmp);
      response_mask.push_back(std::move(response_mask_tmp));
      // load result data
      float result_tmp;
      result_tmp = std::stof(data[2 * MAX_TURN_NUM + 2]);
      result_data.push_back(result_tmp);
    }
    num_samples = num_lines;
  }
};

void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                   int batch_size) {
  PaddleTensor turns_tensor[MAX_TURN_NUM];
  PaddleTensor turns_mask_tensor[MAX_TURN_NUM];
  PaddleTensor response_tensor;
  PaddleTensor response_mask_tensor;
  std::string turn_pre = "turn_";
  std::string turn_mask_pre = "turn_mask_";

  auto one_batch = data->NextBatch();
  int size = one_batch.response[0].size();
  CHECK_EQ(size, MAX_TURN_LEN);
  // turn tensor assignment
  for (int i = 0; i < MAX_TURN_NUM; ++i) {
    turns_tensor[i].name = turn_pre + std::to_string(i);
    turns_tensor[i].shape.assign({batch_size, size, 1});
    turns_tensor[i].dtype = PaddleDType::INT64;
    TensorAssignData<int64_t>(&turns_tensor[i], one_batch.turns[i]);
  }
  // turn mask tensor assignment
  for (int i = 0; i < MAX_TURN_NUM; ++i) {
    turns_mask_tensor[i].name = turn_mask_pre + std::to_string(i);
    turns_mask_tensor[i].shape.assign({batch_size, size, 1});
    turns_mask_tensor[i].dtype = PaddleDType::FLOAT32;
    TensorAssignData<float>(&turns_mask_tensor[i], one_batch.turns_mask[i]);
  }
  // response tensor assignment
  response_tensor.name = "response";
  response_tensor.shape.assign({batch_size, size, 1});
  response_tensor.dtype = PaddleDType::INT64;
  TensorAssignData<int64_t>(&response_tensor, one_batch.response);
  // response mask tensor assignment
  response_mask_tensor.name = "response_mask";
  response_mask_tensor.shape.assign({batch_size, size, 1});
  response_mask_tensor.dtype = PaddleDType::FLOAT32;
  TensorAssignData<float>(&response_mask_tensor, one_batch.response_mask);

  // Set inputs.
  for (int i = 0; i < MAX_TURN_NUM; ++i) {
    input_slots->push_back(std::move(turns_tensor[i]));
  }
  for (int i = 0; i < MAX_TURN_NUM; ++i) {
    input_slots->push_back(std::move(turns_mask_tensor[i]));
  }
  input_slots->push_back(std::move(response_tensor));
  input_slots->push_back(std::move(response_mask_tensor));
}

void SetConfig(contrib::AnalysisConfig *cfg) {
151
  cfg->model_dir = FLAGS_infer_model;
Z
Zhen Wang 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
  cfg->use_gpu = false;
  cfg->device = 0;
  cfg->specify_input_name = true;
  cfg->enable_ir_optim = true;
}

void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
  std::vector<PaddleTensor> input_slots;
  int test_batch_num =
      FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1;
  LOG(INFO) << "The number of samples to be test: "
            << test_batch_num * FLAGS_batch_size;
  for (int bid = 0; bid < test_batch_num; ++bid) {
    input_slots.clear();
    PrepareInputs(&input_slots, &data, FLAGS_batch_size);
    (*inputs).emplace_back(input_slots);
  }
}

// Easy for profiling independently.
TEST(Analyzer_dam, profile) {
  contrib::AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<PaddleTensor> outputs;
  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
180 181
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                 input_slots_all, &outputs, FLAGS_num_threads);
Z
Zhen Wang 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

  if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
    PADDLE_ENFORCE_GT(outputs.size(), 0);
    size_t size = GetSize(outputs[0]);
    PADDLE_ENFORCE_GT(size, 0);
    float *result = static_cast<float *>(outputs[0].data.data());
    for (size_t i = 0; i < size; i++) {
      EXPECT_NEAR(result[i], result_data[i], 1e-3);
    }
  }
}

// Check the fuse status
TEST(Analyzer_dam, fuse_statis) {
  contrib::AnalysisConfig cfg;
  SetConfig(&cfg);

T
Tao Luo 已提交
199 200 201 202 203
  int num_ops;
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
  auto fuse_statis = GetFuseStatis(
      static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
  ASSERT_TRUE(fuse_statis.count("fc_fuse"));
204 205
  EXPECT_EQ(fuse_statis.at("fc_fuse"), 45);
  EXPECT_EQ(num_ops, 292);
Z
Zhen Wang 已提交
206 207 208 209 210 211 212 213 214 215
}

// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_dam, compare) {
  contrib::AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);

T
Tao Luo 已提交
216 217
  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
Z
Zhen Wang 已提交
218 219 220 221
}

}  // namespace inference
}  // namespace paddle