distribute_transpiler.py 27.2 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
typhoonzero 已提交
15
from __future__ import print_function
T
done  
typhoonzero 已提交
16 17 18 19
import framework
from framework import Program, default_main_program, Parameter, Variable
import optimizer
from layer_helper import LayerHelper
T
typhoonzero 已提交
20
from distributed_spliter import *
T
typhoonzero 已提交
21
import math
22
from . import core
T
done  
typhoonzero 已提交
23 24


T
typhoonzero 已提交
25 26 27 28 29 30
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
31

T
typhoonzero 已提交
32 33
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
34 35


36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
class UnionFind(object):
    """ Union-find data struct.
    
    Union-find is a data struct that keeps track of a set of elements partitioned
    into a number of disjoint (non-overlapping) subsets.

    Reference:
    https://en.wikipedia.org/wiki/Disjoint-set_data_structure

    Args:
      elements(list): The initialize element list.
    """

    def __init__(self, elementes=None):
        self._parents = []  # index -> parent index
        self._index = {}  # element -> index
        self._curr_idx = 0
        if not elementes:
            elementes = []
        for ele in elementes:
            self._parents.append(self._curr_idx)
            self._index.update({ele: self._curr_idx})
            self._curr_idx += 1

    def find(self, x):
        # Find the root index of given element x,
        # execute the path compress while findind the root index
        if not x in self._index:
            return -1
        idx = self._index[x]
        while idx != self._parents[idx]:
            t = self._parents[idx]
            self._parents[idx] = self._parents[t]
            idx = t
        return idx

    def union(self, x, y):
        # Union two given element
        x_root = self.find(x)
        y_root = self.find(y)

        if x_root == y_root:
            return
        self._parents[x_root] = y_root

    def is_connected(self, x, y):
        # If two given elements have the same root index,
        # then they are connected.
        return self.find(x) == self.find(y)


87 88 89 90
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


T
typhoonzero 已提交
91 92 93 94 95
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
96
        We may need to split dense tensor to one or more blocks and put
T
typhoonzero 已提交
97 98
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
99

T
typhoonzero 已提交
100 101
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
102 103
        minimum block size is 1024. The max block size is used to prevent
        very large blocks that may cause send error.
T
typhoonzero 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
122
        # update split_count after aligning
T
typhoonzero 已提交
123 124 125 126 127 128 129 130 131
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


T
done  
typhoonzero 已提交
132 133 134 135 136 137 138 139 140
class DistributeTranspiler:
    def transpile(self,
                  optimize_ops,
                  params_grads,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  split_method=round_robin):
        """
141 142
            Transpile the program to distributed data-parallelism programs.
            The main_program will be transformed to use a remote parameter server
T
done  
typhoonzero 已提交
143
            to do parameter optimization. And the optimization graph will be put
144
            into a parameter server program.
T
done  
typhoonzero 已提交
145

146
            Use different methods to split trainable variables to different
T
done  
typhoonzero 已提交
147 148 149 150 151
            parameter servers.

            :param optimize_ops: op list of optimization, should be the
                                 return value of Optimizer.minimize
            :type optimize_ops: list
152
            :param program: program to optimize, default is default_main_program
T
done  
typhoonzero 已提交
153 154 155 156
            :param pservers: parameter server endpoints like "m1:6174,m2:6174"
            :type pservers: string
            :return: return a list of programs
        """
T
typhoonzero 已提交
157
        assert (callable(split_method))
T
done  
typhoonzero 已提交
158 159
        if program is None:
            program = default_main_program()
T
typhoonzero 已提交
160
        self.program = program
T
done  
typhoonzero 已提交
161
        self.trainers = trainers
T
typhoonzero 已提交
162
        self.optimize_ops = optimize_ops
T
typhoonzero 已提交
163
        # steps to transpile:
164
        # 1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
T
typhoonzero 已提交
165 166 167
        # 2. modify trainer program add split_op to each Grad.
        # 3. append send_op to trainer.
        # 4. append concat_op to trainer to update local weights.
168
        # 5. create new program for parameter server.
T
typhoonzero 已提交
169
        # 6. create parameter server program by split_method generated endpoint->VarBlock
T
typhoonzero 已提交
170

T
typhoonzero 已提交
171
        pserver_endpoints = pservers.split(",")
T
typhoonzero 已提交
172 173

        # step1
T
typhoonzero 已提交
174 175
        param_list = [pg[0] for pg in params_grads]
        grad_list = [pg[1] for pg in params_grads]
T
typhoonzero 已提交
176
        # TODO: add split selected rows support
T
typhoonzero 已提交
177 178
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
T
typhoonzero 已提交
179
        # step2
T
typhoonzero 已提交
180
        grad_var_mapping = self._append_split_op(program, grad_blocks)
T
typhoonzero 已提交
181 182 183

        # step3
        send_inputs = []
T
typhoonzero 已提交
184
        send_outputs = []
T
typhoonzero 已提交
185 186 187 188
        for b in grad_blocks:  # append by order
            varname, block_id, _ = b.split(":")
            send_inputs.append(grad_var_mapping[varname][int(block_id)])

T
typhoonzero 已提交
189 190
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
T
typhoonzero 已提交
191 192 193
        for b in param_blocks:
            varname, block_id, _ = b.split(":")
            send_outputs.append(param_var_mapping[varname][int(block_id)])
194 195
        # let send_op know which endpoint to send which var to, eplist has the same
        # order as send_inputs.
T
typhoonzero 已提交
196
        eplist = split_method(send_inputs, pserver_endpoints)
197
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
198 199 200 201 202 203 204 205
        self.param_grad_ep_mapping = dict()
        for i, ep in enumerate(eplist):
            param = send_outputs[i]
            grad = send_inputs[i]
            if not self.param_grad_ep_mapping.has_key(ep):
                self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
            self.param_grad_ep_mapping[ep]["params"].append(param)
            self.param_grad_ep_mapping[ep]["grads"].append(grad)
T
typhoonzero 已提交
206

T
typhoonzero 已提交
207 208 209 210 211 212
        rpc_client_var = program.global_block().create_var(
            name="RPC_CLIENT_VAR",
            psersistable=True,
            dtype='float32',  # dtype and shape is not used in fact
            shape=[0])

213
        # create send_op
T
typhoonzero 已提交
214 215 216
        send_op = program.global_block().append_op(
            type="send",
            inputs={"X": send_inputs},
T
typhoonzero 已提交
217 218
            outputs={"Out": send_outputs,
                     "RPCClient": rpc_client_var},
T
typhoonzero 已提交
219
            attrs={"endpoints": pserver_endpoints,
T
typhoonzero 已提交
220 221 222
                   "epmap": eplist})
        # step4
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
223 224
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
225 226 227
            orig_param = program.global_block().vars[varname]
            concat = program.global_block().append_op(
                type="concat",
T
typhoonzero 已提交
228
                inputs={"X": splited_var},
T
typhoonzero 已提交
229
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
230
                attrs={"axis": 0})
T
typhoonzero 已提交
231

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
        self.lr_param_mapping = self._create_lr_param_mapping()

    def _create_lr_param_mapping(self):
        lr_mapping = dict()
        for _, opt_op in enumerate(self.optimize_ops):
            if not opt_op.inputs or not opt_op.inputs.has_key("LearningRate") \
              or not opt_op.inputs.has_key("Param"):
                continue
            lr = opt_op.inputs["LearningRate"].name
            param = opt_op.inputs["Param"].name
            if not lr_mapping.has_key(lr):
                lr_mapping.update({lr: list()})
            lr_mapping[lr].append(param)
        return lr_mapping

T
typhoonzero 已提交
247
    def _create_vars_from_blocklist(self, program, block_list):
248
        # Create respective variables using the block_list
T
typhoonzero 已提交
249
        block_map = dict()
T
typhoonzero 已提交
250
        var_mapping = dict()
T
typhoonzero 已提交
251 252 253 254 255 256 257
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
258 259 260 261
            var_mapping[varname] = []
            if len(splited) == 1:
                var_mapping[varname] = [orig_var]
                continue
T
typhoonzero 已提交
262 263 264 265
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
266

T
typhoonzero 已提交
267
            for i, block in enumerate(splited):
T
typhoonzero 已提交
268
                size = block[1]
T
typhoonzero 已提交
269 270 271 272
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
273 274 275 276
                var = program.global_block().create_var(
                    name="%s.block%d" % (varname, i),
                    psersistable=False,
                    dtype=orig_var.dtype,
T
typhoonzero 已提交
277
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
278
                var_mapping[varname].append(var)
T
typhoonzero 已提交
279
        return var_mapping
T
done  
typhoonzero 已提交
280 281 282 283 284 285 286 287 288

    def _clone_var(self, block, var):
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
289
            # HACK: let all param in pserver be persistable so the child
T
typhoonzero 已提交
290 291
            # program in recv can get them
            persistable=True)
T
done  
typhoonzero 已提交
292

T
typhoonzero 已提交
293
    def _append_split_op(self, program, gradblocks):
294
        # Split variables that need to be split and append respective ops
T
typhoonzero 已提交
295 296
        var_mapping = self._create_vars_from_blocklist(program, gradblocks)
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
297 298
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
299
                continue
T
typhoonzero 已提交
300
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
301
            if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
302 303 304 305 306 307 308 309
                height_sections = []
                for v in splited_vars:
                    height_sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split_selected_rows",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"height_sections": height_sections})
T
typhoonzero 已提交
310
            elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
311 312 313 314 315 316 317 318 319 320 321 322
                sections = []
                for v in splited_vars:
                    sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"sections": sections}  # assume split evenly
                )
            else:
                AssertionError("Variable type should be in set "
                               "[LOD_TENSOR, SELECTED_ROWS]")
T
typhoonzero 已提交
323
        return var_mapping
T
done  
typhoonzero 已提交
324

T
typhoonzero 已提交
325
    def get_trainer_program(self):
T
typhoonzero 已提交
326
        # remove optimize ops and add a send op to main_program
T
typhoonzero 已提交
327 328
        self.program.global_block().delete_ops(self.optimize_ops)
        return self.program
T
typhoonzero 已提交
329

T
done  
typhoonzero 已提交
330
    def _create_var_for_trainers(self, block, var, trainers):
331
        # For each trainer, create the necessary variables
T
done  
typhoonzero 已提交
332 333 334 335 336 337 338 339 340 341
        var_list = []
        for i in xrange(trainers):
            var_each = block.create_var(
                name="%s.trainer_%d" % (var.name, i),
                psersistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
            var_list.append(var_each)
        return var_list

T
typhoonzero 已提交
342 343 344 345
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
346
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

369 370 371 372 373 374 375 376 377
    def _fetch_var_names(self, param_dict):
        res = []
        if not param_dict:
            return res
        for _, values in param_dict.iteritems():
            if not isinstance(values, list):
                values = [values]
            res += [v.name for v in values]
        return res
T
typhoonzero 已提交
378

379 380
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint):
        program = optimize_block.program
T
typhoonzero 已提交
381
        new_inputs = dict()
T
typhoonzero 已提交
382 383
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
384
        for key in opt_op.input_names:
T
typhoonzero 已提交
385 386 387
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
T
typhoonzero 已提交
388
                    if same_or_split_var(g.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
389 390 391 392 393 394
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
395
                merged_var = program.global_block().vars[grad_block.name]
T
typhoonzero 已提交
396 397
                # append merging ops if trainers > 1
                if self.trainers > 1:
T
done  
typhoonzero 已提交
398
                    vars2merge = self._create_var_for_trainers(
T
typhoonzero 已提交
399
                        program.global_block(), grad_block, self.trainers)
400
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
401 402 403
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
404
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
405 406 407 408
                        type="scale",
                        inputs={"X": merged_var},
                        outputs={"Out": merged_var},
                        attrs={"scale": 1.0 / float(self.trainers)})
T
typhoonzero 已提交
409 410 411 412 413
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
414
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
415 416 417 418
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
419
                tmpvar = program.global_block().create_var(
T
typhoonzero 已提交
420
                    name=param_block.name,
T
typhoonzero 已提交
421
                    persistable=True,
T
typhoonzero 已提交
422 423
                    dtype=param_block.dtype,
                    shape=param_block.shape)
T
typhoonzero 已提交
424

T
typhoonzero 已提交
425
                new_inputs[key] = tmpvar
426 427 428 429 430
            elif key == "LearningRate":
                # leraning rate variable has already be created by non-optimize op,
                # don't create it once again.
                new_inputs[key] = program.global_block().vars[opt_op.input(key)[
                    0]]
T
typhoonzero 已提交
431

T
typhoonzero 已提交
432
        for key in opt_op.input_names:
433 434
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
435
                continue
436
            var = program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
437 438 439 440 441 442 443 444 445 446
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
            tmpvar = program.global_block().create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
447

448
        # change output's ParamOut variable
449
        opt_op.outputs["ParamOut"] = new_inputs["Param"]
450
        optimize_block.append_op(
T
typhoonzero 已提交
451 452
            type=opt_op.type,
            inputs=new_inputs,
453
            outputs=opt_op.outputs,
T
typhoonzero 已提交
454 455
            attrs=opt_op.attrs)

456 457
    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
        program = optimize_block.program
458
        # Append the ops for parameters that do not need to be optimized/updated
T
typhoonzero 已提交
459 460
        inputs = self._get_input_map_from_op(self.program.global_block().vars,
                                             opt_op)
461 462 463 464
        for varlist in inputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

T
typhoonzero 已提交
465
            for var in varlist:
466 467
                if not program.global_block().vars.has_key(var.name):
                    program.global_block().create_var(
T
typhoonzero 已提交
468 469 470 471 472 473 474 475
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

        outputs = self._get_output_map_from_op(self.program.global_block().vars,
                                               opt_op)

476 477 478 479 480 481 482 483 484 485 486
        for varlist in outputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

            for var in varlist:
                program.global_block().create_var(
                    name=var.name,
                    persistable=var.persistable,
                    dtype=var.dtype,
                    shape=var.shape)

487
        optimize_block.append_op(
T
typhoonzero 已提交
488
            type=opt_op.type,
T
typhoonzero 已提交
489 490
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
491 492
            attrs=opt_op.attrs)

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
        op1_input_names = self._fetch_var_names(op1.inputs)
        op1_output_names = self._fetch_var_names(op1.outputs)

        op2_input_names = self._fetch_var_names(op2.inputs)
        op2_output_names = self._fetch_var_names(op2.outputs)
        if set(op1_output_names) & set(op2_input_names) or \
           set(op1_input_names) & set(op2_output_names):
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

    def _is_opt_op(self, op):
        # NOTE: It's a HACK implement.
        # optimize op: SGDOptimize, MomentumOptimizer, AdamOptimizer and etc... 
        if op.inputs and op.inputs.has_key("Param") \
          and op.inputs.has_key("LearningRate"):
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
        if op.inputs["Param"].name in param_names:
            return True
        else:
            for n in param_names:
                param = op.inputs["Param"].name
                if same_or_split_var(n, param) and n != op.inputs["Param"].name:
                    return True
            return False
        return False

540
    def get_pserver_program(self, endpoint):
T
typhoonzero 已提交
541
        """
542
        Get pserver side program using the endpoint
T
typhoonzero 已提交
543 544 545 546 547 548 549 550 551

        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch. For each pserver endpoint, server side
        program must be a sub-set of the original optimization program.
        """
        # step5
        pserver_program = Program()
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
552
            self._clone_var(pserver_program.global_block(), v)
T
typhoonzero 已提交
553 554 555 556 557 558 559 560 561 562 563
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            pserver_program.global_block().create_var(
                name=v.name, persistable=True, dtype=v.dtype, shape=v.shape)
            for trainer_id in xrange(self.trainers):
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d" % (v.name, trainer_id),
                    persistable=True,
                    dtype=v.dtype,
                    shape=v.shape)
T
typhoonzero 已提交
564
        # step6
565
        optimize_block = pserver_program.create_block(0)
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
        # step 6.1
        # Create a union-find data struct by optimize ops,
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
        # step 6.2 
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
            if self._is_opt_op(op) and self._is_opt_op_on_pserver(endpoint, op):
                opt_op_on_pserver.append(op)
        # step 6.3
        # Iterate through the ops, and if an op and the optimize ops
        # which located on current pserver are in one set, then 
        # append it into the sub program.
        for _, op in enumerate(self.optimize_ops):
            for _, opt_op in enumerate(opt_op_on_pserver):
                if ufind.is_connected(op, opt_op):
                    if self._is_opt_op(op):
                        self._append_pserver_ops(optimize_block, op, endpoint)
                    else:
                        self._append_pserver_non_opt_ops(optimize_block, op)
                    break
590
        # Append the listen_and_serv op
T
done  
typhoonzero 已提交
591
        pserver_program.global_block().append_op(
592
            type="listen_and_serv",
T
typhoonzero 已提交
593
            inputs={},
T
done  
typhoonzero 已提交
594 595
            outputs={},
            attrs={
596
                "OptimizeBlock": optimize_block,
T
done  
typhoonzero 已提交
597
                "endpoint": endpoint,
T
typhoonzero 已提交
598 599 600 601 602 603 604 605
                "ParamList": [
                    p.name
                    for p in self.param_grad_ep_mapping[endpoint]["params"]
                ],
                "GradList": [
                    p.name
                    for p in self.param_grad_ep_mapping[endpoint]["grads"]
                ],
T
typhoonzero 已提交
606
                "Fanin": self.trainers
T
done  
typhoonzero 已提交
607 608 609
            })
        pserver_program.sync_with_cpp()
        return pserver_program
T
typhoonzero 已提交
610

T
typhoonzero 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
    def _get_input_map_from_op(self, varmap, op):
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

T
typhoonzero 已提交
635
    def get_startup_program(self, endpoint, pserver_program):
T
typhoonzero 已提交
636 637 638
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
639
        were split to several blocks.
T
typhoonzero 已提交
640 641 642 643 644 645 646 647
        """
        s_prog = Program()
        orig_s_prog = framework.default_startup_program()
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
648
                if same_or_split_var(pname, varname) and varname != pname:
T
typhoonzero 已提交
649 650 651
                    return pname, splited_param.shape
            return "", []

Y
update  
yi.wu 已提交
652 653
        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
T
typhoonzero 已提交
654
        created_var_map = dict()
Y
update  
yi.wu 已提交
655
        for _, var in pserver_vars.iteritems():
T
typhoonzero 已提交
656 657
            tmpvar = s_prog.global_block().create_var(
                name=var.name,
T
typhoonzero 已提交
658
                persistable=var.persistable,
T
typhoonzero 已提交
659 660 661 662 663 664
                dtype=var.dtype,
                shape=var.shape)
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
T
typhoonzero 已提交
665
            new_inputs = dict()
T
typhoonzero 已提交
666
            new_outputs = dict()
Y
update  
yi.wu 已提交
667 668
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
T
typhoonzero 已提交
669 670
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
T
typhoonzero 已提交
671
                if newname:
Y
update  
yi.wu 已提交
672
                    op_on_pserver = True
T
typhoonzero 已提交
673
                    new_outputs[key] = created_var_map[newname]
T
typhoonzero 已提交
674
                elif op.output(key)[0] in pserver_vars:
T
typhoonzero 已提交
675
                    op_on_pserver = True
T
typhoonzero 已提交
676 677 678 679
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)
Y
update  
yi.wu 已提交
680

T
typhoonzero 已提交
681
            if op_on_pserver:
T
typhoonzero 已提交
682 683 684
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
T
typhoonzero 已提交
685
                    op.attrs["shape"] = new_outputs["Out"].shape
T
typhoonzero 已提交
686 687
                s_prog.global_block().append_op(
                    type=op.type,
T
typhoonzero 已提交
688
                    inputs=new_inputs,
T
typhoonzero 已提交
689 690 691
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog