distribute_transpiler.py 16.0 KB
Newer Older
T
typhoonzero 已提交
1
from __future__ import print_function
T
done  
typhoonzero 已提交
2 3 4 5
import framework
from framework import Program, default_main_program, Parameter, Variable
import optimizer
from layer_helper import LayerHelper
T
typhoonzero 已提交
6
from distributed_spliter import *
T
typhoonzero 已提交
7
import math
T
done  
typhoonzero 已提交
8 9


T
typhoonzero 已提交
10 11 12 13 14 15
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
16

T
typhoonzero 已提交
17 18
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
19 20


T
typhoonzero 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
        We may need to split dense tensor to one or several blocks and put
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
        
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
        mininum block size is 1024. The max block size is used to prevent
        too large block that may causing send error.
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
        # update split_count after align
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
T
typhoonzero 已提交
59 60
        print("$$ splited var: ", var.name, var.shape, split_count, len(blocks),
              block_size)
T
typhoonzero 已提交
61 62 63
    return blocks


T
done  
typhoonzero 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
class DistributeTranspiler:
    def transpile(self,
                  optimize_ops,
                  params_grads,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  split_method=round_robin):
        """
            Transpile the program to a distributed data-parallelism programs.
            The main_program will be transform to use a remote parameter server
            to do parameter optimization. And the optimization graph will be put
            in to a parameter server program.

            Use different methods to split trainable varialbles to different
            parameter servers.

            :param optimize_ops: op list of optimization, should be the
                                 return value of Optimizer.minimize
            :type optimize_ops: list
            :param program: program to optimize, default default_main_program
            :param pservers: parameter server endpoints like "m1:6174,m2:6174"
            :type pservers: string
            :return: return a list of programs
        """
T
typhoonzero 已提交
89
        assert (callable(split_method))
T
done  
typhoonzero 已提交
90 91
        if program is None:
            program = default_main_program()
T
typhoonzero 已提交
92
        self.program = program
T
done  
typhoonzero 已提交
93
        self.trainers = trainers
T
typhoonzero 已提交
94
        self.optimize_ops = optimize_ops
T
typhoonzero 已提交
95 96 97 98 99 100
        # steps to transpile:
        # 1. split variable to multiple blocks, align by product(dim[1:]) (width).
        # 2. modify trainer program add split_op to each Grad.
        # 3. append send_op to trainer.
        # 4. append concat_op to trainer to update local weights.
        # 5. create new program as parameter server.
T
typhoonzero 已提交
101
        # 6. create parameter server program by split_method generated endpoint->VarBlock
T
typhoonzero 已提交
102

T
typhoonzero 已提交
103
        pserver_endpoints = pservers.split(",")
T
typhoonzero 已提交
104 105

        # step1
T
typhoonzero 已提交
106 107
        param_list = [pg[0] for pg in params_grads]
        grad_list = [pg[1] for pg in params_grads]
T
typhoonzero 已提交
108
        # TODO: add split selected rows support
T
typhoonzero 已提交
109 110
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
T
typhoonzero 已提交
111
        # step2
T
typhoonzero 已提交
112
        grad_var_mapping = self._append_split_op(program, grad_blocks)
T
typhoonzero 已提交
113 114 115

        # step3
        send_inputs = []
T
typhoonzero 已提交
116
        send_outputs = []
T
typhoonzero 已提交
117 118 119 120
        for b in grad_blocks:  # append by order
            varname, block_id, _ = b.split(":")
            send_inputs.append(grad_var_mapping[varname][int(block_id)])

T
typhoonzero 已提交
121 122
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
T
typhoonzero 已提交
123 124 125
        for b in param_blocks:
            varname, block_id, _ = b.split(":")
            send_outputs.append(param_var_mapping[varname][int(block_id)])
T
typhoonzero 已提交
126 127 128
        # let send_op know which endpoint to send which var, eplist is of the same
        # order of send_inputs.
        eplist = split_method(send_inputs, pserver_endpoints)
T
typhoonzero 已提交
129 130 131 132 133 134 135 136 137
        # create mapping of endpoint -> var to create pserver side program
        self.param_grad_ep_mapping = dict()
        for i, ep in enumerate(eplist):
            param = send_outputs[i]
            grad = send_inputs[i]
            if not self.param_grad_ep_mapping.has_key(ep):
                self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
            self.param_grad_ep_mapping[ep]["params"].append(param)
            self.param_grad_ep_mapping[ep]["grads"].append(grad)
T
typhoonzero 已提交
138 139 140 141 142 143

        send_op = program.global_block().append_op(
            type="send",
            inputs={"X": send_inputs},
            outputs={"Out": send_outputs},
            attrs={"endpoints": pserver_endpoints,
T
typhoonzero 已提交
144 145 146 147
                   "epmap": eplist})

        # step4
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
148 149
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
150 151 152
            orig_param = program.global_block().vars[varname]
            concat = program.global_block().append_op(
                type="concat",
T
typhoonzero 已提交
153
                inputs={"X": splited_var},
T
typhoonzero 已提交
154 155
                outputs={"Out": orig_param},
                attrs={"axis": 0})
T
typhoonzero 已提交
156 157 158

    def _create_vars_from_blocklist(self, program, block_list):
        block_map = dict()
T
typhoonzero 已提交
159
        var_mapping = dict()
T
typhoonzero 已提交
160 161 162 163 164 165 166
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
167 168 169 170
            var_mapping[varname] = []
            if len(splited) == 1:
                var_mapping[varname] = [orig_var]
                continue
T
typhoonzero 已提交
171 172 173 174
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
175

T
typhoonzero 已提交
176
            for i, block in enumerate(splited):
T
typhoonzero 已提交
177
                size = block[1]
T
typhoonzero 已提交
178 179 180 181
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
182 183 184 185
                var = program.global_block().create_var(
                    name="%s.block%d" % (varname, i),
                    psersistable=False,
                    dtype=orig_var.dtype,
T
typhoonzero 已提交
186
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
187
                var_mapping[varname].append(var)
T
typhoonzero 已提交
188
        return var_mapping
T
done  
typhoonzero 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

    def _clone_param(self, block, v):
        assert isinstance(v, Parameter)
        new_p = Parameter(
            block=block,
            shape=v.shape,
            dtype=v.dtype,
            type=v.type,
            lod_level=v.lod_level,
            stop_gradient=v.stop_gradient,
            trainable=v.trainable,
            optimize_attr=v.optimize_attr,
            regularizer=v.regularizer,
            name=v.name)
        block.vars[new_p.name] = new_p

    def _clone_var(self, block, var):
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=var.persistable)

T
typhoonzero 已提交
215 216 217
    def _append_split_op(self, program, gradblocks):
        var_mapping = self._create_vars_from_blocklist(program, gradblocks)
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
218 219
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
220
                continue
T
typhoonzero 已提交
221
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
222 223 224
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
T
typhoonzero 已提交
225 226 227
            program.global_block().append_op(
                type="split",
                inputs={"X": orig_var},
T
typhoonzero 已提交
228 229
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
T
typhoonzero 已提交
230
            )
T
typhoonzero 已提交
231
        return var_mapping
T
done  
typhoonzero 已提交
232

T
typhoonzero 已提交
233
    def get_trainer_program(self):
T
typhoonzero 已提交
234
        # remove optimize ops and add a send op to main_program
T
typhoonzero 已提交
235 236
        self.program.global_block().delete_ops(self.optimize_ops)
        return self.program
T
typhoonzero 已提交
237

T
done  
typhoonzero 已提交
238 239 240 241 242 243 244 245 246 247 248
    def _create_var_for_trainers(self, block, var, trainers):
        var_list = []
        for i in xrange(trainers):
            var_each = block.create_var(
                name="%s.trainer_%d" % (var.name, i),
                psersistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
            var_list.append(var_each)
        return var_list

T
typhoonzero 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
        Param and Grad is splited to multiple servers.
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

    def _append_pserver_ops(self, program, opt_op, endpoint):
T
typhoonzero 已提交
277
        new_inputs = dict()
T
typhoonzero 已提交
278 279
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
280 281 282 283 284 285 286 287 288 289 290
        for key, var in opt_op.inputs.iteritems():
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
                    if g.name.startswith(var.name):
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
291
                merged_var = program.global_block().create_var(
T
typhoonzero 已提交
292 293 294 295 296 297
                    name=grad_block.name,
                    persistable=grad_block.persistable,
                    dtype=grad_block.dtype,
                    shape=grad_block.shape)
                # append merging ops if trainers > 1
                if self.trainers > 1:
T
done  
typhoonzero 已提交
298
                    vars2merge = self._create_var_for_trainers(
T
typhoonzero 已提交
299 300
                        program.global_block(), grad_block, self.trainers)
                    program.global_block().append_op(
T
done  
typhoonzero 已提交
301 302 303
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
T
typhoonzero 已提交
304
                    program.global_block().append_op(
T
done  
typhoonzero 已提交
305 306 307 308
                        type="scale",
                        inputs={"X": merged_var},
                        outputs={"Out": merged_var},
                        attrs={"scale": 1.0 / float(self.trainers)})
T
typhoonzero 已提交
309 310 311 312 313 314 315 316 317 318
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
                    if p.name.startswith(var.name):
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
319
                tmpvar = program.global_block().create_var(
T
typhoonzero 已提交
320 321 322 323 324
                    name=param_block.name,
                    persistable=param_block.persistable,
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
T
typhoonzero 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

        for key, var in opt_op.inputs.iteritems():
            if key in ["Param", "Grad"]:
                continue
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
            print("var, new shape", key, var.name, new_shape)
            tmpvar = program.global_block().create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
340

T
typhoonzero 已提交
341
        # FIXME: change outputs ParamOut
T
typhoonzero 已提交
342
        program.global_block().append_op(
T
typhoonzero 已提交
343 344 345 346 347
            type=opt_op.type,
            inputs=new_inputs,
            outputs=opt_op.outputs,
            attrs=opt_op.attrs)

T
typhoonzero 已提交
348
    def _append_pserver_non_opt_ops(self, program, opt_op):
T
typhoonzero 已提交
349
        for _, var in opt_op.inputs.iteritems():
T
typhoonzero 已提交
350
            program.global_block().create_var(
T
typhoonzero 已提交
351 352 353 354
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
T
typhoonzero 已提交
355
        program.global_block().append_op(
T
typhoonzero 已提交
356
            type=opt_op.type,
T
typhoonzero 已提交
357
            inputs=opt_op.inputs,
T
typhoonzero 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
            outputs=opt_op.outputs,
            attrs=opt_op.attrs)

    def get_pserver_program(self, endpoint, optimize_ops):
        """
        get pserver side program by endpoint

        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch. For each pserver endpoint, server side
        program must be a sub-set of the original optimization program.
        """
        # step5
        pserver_program = Program()
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
373
            self._clone_var(pserver_program.global_block(), v)
T
typhoonzero 已提交
374 375 376
        # step6
        optimize_sub_program = Program()
        for opt_op in optimize_ops:
T
typhoonzero 已提交
377
            if opt_op.inputs.has_key("Grad"):
T
typhoonzero 已提交
378
                # append optimize_op
T
typhoonzero 已提交
379
                self._append_pserver_ops(optimize_sub_program, opt_op, endpoint)
T
typhoonzero 已提交
380
            else:
T
typhoonzero 已提交
381
                self._append_pserver_non_opt_ops(optimize_sub_program, opt_op)
T
typhoonzero 已提交
382

T
done  
typhoonzero 已提交
383 384
        pserver_program.global_block().append_op(
            type="recv",
T
typhoonzero 已提交
385 386
            inputs={"RX": self.param_grad_ep_mapping[endpoint]["grads"]
                    },  # grads to recv
T
done  
typhoonzero 已提交
387 388 389 390
            outputs={},
            attrs={
                "OptimizeProgram": optimize_sub_program.desc,
                "endpoint": endpoint,
T
typhoonzero 已提交
391 392 393 394 395 396 397 398
                "ParamList": [
                    p.name
                    for p in self.param_grad_ep_mapping[endpoint]["params"]
                ],
                "GradList": [
                    p.name
                    for p in self.param_grad_ep_mapping[endpoint]["grads"]
                ],
T
done  
typhoonzero 已提交
399 400 401 402
                "Trainers": self.trainers
            })
        pserver_program.sync_with_cpp()
        return pserver_program