margin_rank_loss_op.cc 4.8 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/margin_rank_loss_op.h"

namespace paddle {
namespace operators {

class MarginRankLossOp : public framework::OperatorWithKernel {
 public:
22
  using framework::OperatorWithKernel::OperatorWithKernel;
Y
Yibing Liu 已提交
23 24

 protected:
25
  void InferShape(framework::InferShapeContextBase *ctx) const override {
Y
Yibing Liu 已提交
26
    // input check
27 28 29 30 31 32 33 34 35 36 37 38 39
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("X1"), "Input(X1) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("X2"), "Input(X2) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) shouldn't be null.");
    auto label_dims = ctx->GetInputDim("Label");
    auto x1_dims = ctx->GetInputDim("X1");
    auto x2_dims = ctx->GetInputDim("X2");
    PADDLE_ENFORCE(
        (label_dims == x1_dims) && (x1_dims == x2_dims) &&
            (label_dims.size() == 2) && (label_dims[1] == 1),
        "All inputs must be 2-D tensor with shape [batch_size x 1].");
    ctx->SetOutputDim("Activated", label_dims);
    ctx->SetOutputDim("Out", label_dims);
Y
Yibing Liu 已提交
40 41 42
  }
};

43
template <typename T>
Y
Yibing Liu 已提交
44 45 46 47 48
class MarginRankLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  MarginRankLossOpMaker(framework::OpProto *proto,
                        framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
49 50 51 52 53 54
    AddInput("X1",
             "(2-D tensor with shape [batch_size x 1]) In pairwise ranking, "
             "X1 is the score for one item to be ranked.");
    AddInput("X2",
             "(2-D tensor with shape [batch_size x 1]) In pairwise ranking, "
             "X2 is the score for another item to be ranked.");
55
    AddInput("Label",
56 57 58 59 60
             "(2-D tensor with shape [batch_size x 1]) "
             "The label indicating X1 ranked higher than X2 or not, "
             "can only be +1 or -1.");
    AddAttr<T>("margin", "(scalar, default 0) Margin for MarginRankLossOp.")
        .SetDefault(static_cast<T>(0));
Y
Yibing Liu 已提交
61
    AddOutput("Activated",
62 63
              "(2-D tensor with shape [batch_size x 1]) Intermediate tensor "
              "to indicate whether each element of Output(Out) is activated.")
Y
Yibing Liu 已提交
64
        .AsIntermediate();
65 66
    AddOutput("Out",
              "(2-D tensor with shape [batch_size x 1])"
67
              "The output loss of MarginRankLoss operator.");
68 69 70
    AddComment(R"DOC(

MarginRankLoss operator measures the loss given a pair of input {`X1`, `X2`}
71
and the `Label` with attribute `margin`, where `Label = +1` indicating X1 is
72
ranked higher than `X2`, otherwise `Label = -1`. The loss turns out
73

74
loss(X1, X2, Label) = max(0, -Label * (X1 - X2) + margin)
Y
Yibing Liu 已提交
75

76 77 78 79 80 81
The attribute `margin` involved here helps make the predictions more robust.
Only when the difference between `X1` and `X2` is greater than `margin`, it is
possible for these two items contribute to the final loss.

For batch input with size `batch_size`, `X1`, `X2` and `Label`
all have the same shape [batch_size x 1].
Y
Yibing Liu 已提交
82 83 84 85 86 87 88

)DOC");
  }
};

class MarginRankLossGradOp : public framework::OperatorWithKernel {
 public:
89
  using framework::OperatorWithKernel::OperatorWithKernel;
Y
Yibing Liu 已提交
90 91

 protected:
92 93 94 95 96 97 98 99 100 101 102
  void InferShape(framework::InferShapeContextBase *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("X1"), "Input(X1) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("X2"), "Input(X2) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) shouldn't be null.");
    PADDLE_ENFORCE(ctx->HasInput("Activated"),
                   "Intermediate(Activated) shouldn't be null.");
    auto dims = ctx->GetInputDim("Label");
    ctx->SetOutputDim(framework::GradVarName("X1"), dims);
    ctx->SetOutputDim(framework::GradVarName("X2"), dims);
Y
Yibing Liu 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
  }
};

}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

REGISTER_OP(margin_rank_loss, ops::MarginRankLossOp,
            ops::MarginRankLossOpMaker<float>, margin_rank_loss_grad,
            ops::MarginRankLossGradOp);
REGISTER_OP_CPU_KERNEL(
    margin_rank_loss,
    ops::MarginRankLossKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    margin_rank_loss_grad,
    ops::MarginRankLossGradKernel<paddle::platform::CPUPlace, float>);