margin_rank_loss_op.h 3.4 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

template <typename T>
struct ReLU {
  HOSTDEVICE T operator()(const T& val) const {
26
    return val > 0 ? val : static_cast<T>(0);
Y
Yibing Liu 已提交
27 28 29 30 31 32
  }
};

template <typename T>
struct Heaviside {
  HOSTDEVICE T operator()(const T& val) const {
33
    return static_cast<T>(val > 0 ? 1 : 0);
Y
Yibing Liu 已提交
34 35 36
  }
};

Q
QI JUN 已提交
37
template <typename DeviceContext, typename T>
Y
Yibing Liu 已提交
38
class MarginRankLossKernel : public framework::OpKernel<T> {
Y
Yibing Liu 已提交
39 40
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
41 42
    auto* out_t = ctx.Output<framework::Tensor>("Out");
    auto* act_t = ctx.Output<framework::Tensor>("Activated");
Y
Yibing Liu 已提交
43 44 45 46 47 48 49 50

    auto* label_t = ctx.Input<framework::Tensor>("Label");
    auto* x1_t = ctx.Input<framework::Tensor>("X1");
    auto* x2_t = ctx.Input<framework::Tensor>("X2");

    out_t->mutable_data<T>(ctx.GetPlace());
    act_t->mutable_data<T>(ctx.GetPlace());

51
    auto margin = static_cast<T>(ctx.Attr<T>("margin"));
Y
Yibing Liu 已提交
52 53 54 55 56 57 58
    auto out = framework::EigenVector<T>::Flatten(*out_t);
    auto act = framework::EigenVector<T>::Flatten(*act_t);

    auto label = framework::EigenVector<T>::Flatten(*label_t);
    auto x1 = framework::EigenVector<T>::Flatten(*x1_t);
    auto x2 = framework::EigenVector<T>::Flatten(*x2_t);

Q
QI JUN 已提交
59
    auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
Y
Yibing Liu 已提交
60
    out.device(dev) = (-label * (x1 - x2) + margin).unaryExpr(ReLU<T>());
61
    act.device(dev) = out.unaryExpr(Heaviside<T>());
Y
Yibing Liu 已提交
62 63 64
  }
};

Q
QI JUN 已提交
65
template <typename DeviceContext, typename T>
Y
Yibing Liu 已提交
66
class MarginRankLossGradKernel : public framework::OpKernel<T> {
Y
Yibing Liu 已提交
67 68 69 70 71 72 73
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    auto* d_x1_t =
        ctx.Output<framework::LoDTensor>(framework::GradVarName("X1"));
    auto* d_x2_t =
        ctx.Output<framework::LoDTensor>(framework::GradVarName("X2"));

74
    auto* act_t = ctx.Input<framework::Tensor>("Activated");
Y
Yibing Liu 已提交
75 76 77 78 79 80
    auto* d_out_t = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* label_t = ctx.Input<framework::Tensor>("Label");

    auto d_out = framework::EigenVector<T>::Flatten(*d_out_t);
    auto act = framework::EigenVector<T>::Flatten(*act_t);
    auto label = framework::EigenVector<T>::Flatten(*label_t);
Q
QI JUN 已提交
81
    auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
Y
Yibing Liu 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

    // compute d_x1
    if (d_x1_t) {
      d_x1_t->mutable_data<T>(ctx.GetPlace());
      auto d_x1 = framework::EigenVector<T>::Flatten(*d_x1_t);
      d_x1.device(dev) = -d_out * act * label;
    }
    // compute d_x2
    if (d_x2_t) {
      d_x2_t->mutable_data<T>(ctx.GetPlace());
      auto d_x2 = framework::EigenVector<T>::Flatten(*d_x2_t);
      d_x2.device(dev) = d_out * act * label;
    }
  }
};
}  // namespace operators
}  // namespace paddle