analyzer_lac_tester.cc 9.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
T
tensor-tang 已提交
14

T
tensor-tang 已提交
15 16
#include "paddle/fluid/inference/analysis/analyzer.h"
#include <gtest/gtest.h>
T
tensor-tang 已提交
17
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
T
tensor-tang 已提交
18 19
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/inference/api/analysis_predictor.h"
T
tensor-tang 已提交
21 22 23
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/platform/profiler.h"
T
tensor-tang 已提交
24

T
tensor-tang 已提交
25 26 27 28 29 30
DEFINE_string(infer_model, "", "model path for LAC");
DEFINE_string(infer_data, "", "data file for LAC");
DEFINE_int32(batch_size, 1, "batch size.");
DEFINE_int32(burning, 0, "Burning before repeat.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
T
tensor-tang 已提交
31

T
tensor-tang 已提交
32 33 34
namespace paddle {
namespace inference {
namespace analysis {
T
tensor-tang 已提交
35

T
tensor-tang 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
struct DataRecord {
  std::vector<int64_t> data;
  std::vector<size_t> lod;
  // for dataset and nextbatch
  size_t batch_iter{0};
  std::vector<std::vector<size_t>> batched_lods;
  std::vector<std::vector<int64_t>> batched_datas;
  std::vector<std::vector<int64_t>> datasets;
  DataRecord() = default;
  explicit DataRecord(const std::string &path, int batch_size = 1) {
    Load(path);
    Prepare(batch_size);
    batch_iter = 0;
  }
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    datasets.resize(0);
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ';', &data);
      std::vector<int64_t> words_ids;
      split_to_int64(data[1], ' ', &words_ids);
      datasets.emplace_back(words_ids);
    }
  }
  void Prepare(int bs) {
    if (bs == 1) {
      batched_datas = datasets;
      for (auto one_sentence : datasets) {
        batched_lods.push_back({0, one_sentence.size()});
      }
    } else {
      std::vector<int64_t> one_batch;
      std::vector<size_t> lod{0};
      int bs_id = 0;
      for (auto one_sentence : datasets) {
        bs_id++;
        one_batch.insert(one_batch.end(), one_sentence.begin(),
                         one_sentence.end());
        lod.push_back(lod.back() + one_sentence.size());
        if (bs_id == bs) {
          bs_id = 0;
          batched_datas.push_back(one_batch);
          batched_lods.push_back(lod);
          one_batch.clear();
          one_batch.resize(0);
          lod.clear();
          lod.resize(0);
          lod.push_back(0);
        }
      }
      if (one_batch.size() != 0) {
        batched_datas.push_back(one_batch);
        batched_lods.push_back(lod);
      }
    }
  }
  DataRecord NextBatch() {
    DataRecord data;
    data.data = batched_datas[batch_iter];
    data.lod = batched_lods[batch_iter];
    batch_iter++;
    if (batch_iter >= batched_datas.size()) {
      batch_iter = 0;
    }
    return data;
  }
};
T
tensor-tang 已提交
107

T
tensor-tang 已提交
108 109 110 111 112 113 114 115 116 117 118 119
void GetOneBatch(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                 int batch_size) {
  auto one_batch = data->NextBatch();
  PaddleTensor input_tensor;
  input_tensor.name = "word";
  input_tensor.shape.assign({static_cast<int>(one_batch.data.size()), 1});
  input_tensor.lod.assign({one_batch.lod});
  input_tensor.dtype = PaddleDType::INT64;
  TensorAssignData<int64_t>(&input_tensor, {one_batch.data});
  PADDLE_ENFORCE_EQ(batch_size, static_cast<int>(one_batch.lod.size() - 1));
  input_slots->assign({input_tensor});
}
T
tensor-tang 已提交
120

T
tensor-tang 已提交
121 122 123 124 125 126
static void PrintTime(const double latency, const int bs, const int repeat) {
  LOG(INFO) << "===========profile result===========";
  LOG(INFO) << "batch_size: " << bs << ", repeat: " << repeat
            << ", avg latency: " << latency / repeat << "ms";
  LOG(INFO) << "=====================================";
}
T
tensor-tang 已提交
127

T
tensor-tang 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
void BenchAllData(const std::string &model_path, const std::string &data_file,
                  const int batch_size, const int repeat) {
  NativeConfig config;
  config.model_dir = model_path;
  config.use_gpu = false;
  config.device = 0;
  config.specify_input_name = true;
  std::vector<PaddleTensor> input_slots, outputs_slots;
  DataRecord data(data_file, batch_size);
  auto predictor =
      CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
  GetOneBatch(&input_slots, &data, batch_size);
  for (int i = 0; i < FLAGS_burning; i++) {
    predictor->Run(input_slots, &outputs_slots);
  }
  Timer timer;
  double sum = 0;
  for (int i = 0; i < repeat; i++) {
    for (size_t bid = 0; bid < data.batched_datas.size(); ++bid) {
      GetOneBatch(&input_slots, &data, batch_size);
      timer.tic();
      predictor->Run(input_slots, &outputs_slots);
      sum += timer.toc();
    }
  }
  PrintTime(sum, batch_size, repeat);
}
T
tensor-tang 已提交
155

T
tensor-tang 已提交
156 157 158 159
const int64_t lac_ref_data[] = {24, 25, 25, 25, 38, 30, 31, 14, 15, 44, 24, 25,
                                25, 25, 25, 25, 44, 24, 25, 25, 25, 36, 42, 43,
                                44, 14, 15, 44, 14, 15, 44, 14, 15, 44, 38, 39,
                                14, 15, 44, 22, 23, 23, 23, 23, 23, 23, 23};
T
tensor-tang 已提交
160

T
tensor-tang 已提交
161 162
void TestLACPrediction(const std::string &model_path,
                       const std::string &data_file, const int batch_size,
T
tensor-tang 已提交
163 164
                       const int repeat, bool test_all_data,
                       bool use_analysis = false) {
T
tensor-tang 已提交
165 166 167 168 169
  NativeConfig config;
  config.model_dir = model_path;
  config.use_gpu = false;
  config.device = 0;
  config.specify_input_name = true;
T
tensor-tang 已提交
170
  std::vector<PaddleTensor> input_slots, outputs_slots, ref_outputs_slots;
T
tensor-tang 已提交
171 172
  DataRecord data(data_file, batch_size);
  GetOneBatch(&input_slots, &data, batch_size);
T
tensor-tang 已提交
173 174
  std::unique_ptr<PaddlePredictor> predictor;
  if (use_analysis) {
T
tensor-tang 已提交
175 176 177 178 179 180
    AnalysisConfig cfg;
    cfg.model_dir = model_path;
    cfg.use_gpu = false;
    cfg.device = 0;
    cfg.specify_input_name = true;
    cfg.enable_ir_optim = true;
T
tensor-tang 已提交
181
    predictor =
T
tensor-tang 已提交
182
        CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(cfg);
T
tensor-tang 已提交
183 184 185 186
  } else {
    predictor =
        CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
  }
T
tensor-tang 已提交
187 188 189 190
  for (int i = 0; i < FLAGS_burning; i++) {
    predictor->Run(input_slots, &outputs_slots);
  }
  Timer timer;
T
tensor-tang 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203
  if (test_all_data) {
    double sum = 0;
    for (int i = 0; i < repeat; i++) {
      for (size_t bid = 0; bid < data.batched_datas.size(); ++bid) {
        GetOneBatch(&input_slots, &data, batch_size);
        timer.tic();
        predictor->Run(input_slots, &outputs_slots);
        sum += timer.toc();
      }
    }
    PrintTime(sum, batch_size, repeat);
    return;
  }
T
tensor-tang 已提交
204 205 206 207 208
  timer.tic();
  for (int i = 0; i < repeat; i++) {
    predictor->Run(input_slots, &outputs_slots);
  }
  PrintTime(timer.toc(), batch_size, repeat);
T
tensor-tang 已提交
209 210 211 212 213 214 215 216 217

  // check result
  if (use_analysis) {
    // run once for comparion as reference
    auto ref_predictor =
        CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
    ref_predictor->Run(input_slots, &ref_outputs_slots);
  }

T
tensor-tang 已提交
218 219 220 221 222 223 224 225 226 227 228
  EXPECT_EQ(outputs_slots.size(), 1UL);
  auto &out = outputs_slots[0];
  size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
                                [](int a, int b) { return a * b; });
  size_t batch1_size = sizeof(lac_ref_data) / sizeof(int64_t);
  PADDLE_ENFORCE_GT(size, 0);
  EXPECT_GE(size, batch1_size);
  int64_t *pdata = static_cast<int64_t *>(out.data.data());
  for (size_t i = 0; i < batch1_size; ++i) {
    EXPECT_EQ(pdata[i], lac_ref_data[i]);
  }
T
tensor-tang 已提交
229 230 231 232 233 234 235 236 237 238 239 240

  if (use_analysis) {
    EXPECT_EQ(ref_outputs_slots.size(), outputs_slots.size());
    auto &ref_out = ref_outputs_slots[0];
    size_t ref_size =
        std::accumulate(ref_out.shape.begin(), ref_out.shape.end(), 1,
                        [](int a, int b) { return a * b; });
    EXPECT_EQ(size, ref_size);
    int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
    for (size_t i = 0; i < size; ++i) {
      EXPECT_EQ(pdata_ref[i], pdata[i]);
    }
T
tensor-tang 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

    AnalysisPredictor *analysis_predictor =
        dynamic_cast<AnalysisPredictor *>(predictor.get());
    auto &fuse_statis = analysis_predictor->analysis_argument()
                            .Get<std::unordered_map<std::string, int>>(
                                framework::ir::kFuseStatisAttr);
    for (auto &item : fuse_statis) {
      LOG(INFO) << "fused " << item.first << " " << item.second;
    }
    int num_ops = 0;
    for (auto &node :
         analysis_predictor->analysis_argument().main_dfg->nodes.nodes()) {
      if (node->IsFunction()) {
        ++num_ops;
      }
    }
    LOG(INFO) << "has num ops: " << num_ops;
    ASSERT_TRUE(fuse_statis.count("fc_fuse"));
    ASSERT_TRUE(fuse_statis.count("fc_gru_fuse"));
    LOG(INFO) << "fc fuse num:" << fuse_statis.at("fc_fuse");
    LOG(INFO) << "fc gru fuse num:" << fuse_statis.at("fc_gru_fuse");

    // ASSERT_TRUE(fuse_statis.count("fc_gru_fuse"));
    // LOG(INFO) << fuse_statis.at("fc_gru_fuse");
T
tensor-tang 已提交
265
  }
T
tensor-tang 已提交
266
}
T
tensor-tang 已提交
267

T
tensor-tang 已提交
268 269 270 271 272
TEST(Analyzer_LAC, native) {
  LOG(INFO) << "LAC with native";
  TestLACPrediction(FLAGS_infer_model, FLAGS_infer_data, FLAGS_batch_size,
                    FLAGS_repeat, FLAGS_test_all_data);
}
T
tensor-tang 已提交
273 274 275 276 277 278 279

TEST(Analyzer_LAC, analysis) {
  LOG(INFO) << "LAC with analysis";
  TestLACPrediction(FLAGS_infer_model, FLAGS_infer_data, FLAGS_batch_size,
                    FLAGS_repeat, FLAGS_test_all_data, true);
}

T
tensor-tang 已提交
280 281 282
}  // namespace analysis
}  // namespace inference
}  // namespace paddle