analyzer_lac_tester.cc 8.5 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
T
tensor-tang 已提交
14

T
tensor-tang 已提交
15 16 17 18 19 20 21
#include "paddle/fluid/inference/analysis/analyzer.h"
#include <gtest/gtest.h>
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/platform/profiler.h"
T
tensor-tang 已提交
22

T
tensor-tang 已提交
23 24 25 26 27 28
DEFINE_string(infer_model, "", "model path for LAC");
DEFINE_string(infer_data, "", "data file for LAC");
DEFINE_int32(batch_size, 1, "batch size.");
DEFINE_int32(burning, 0, "Burning before repeat.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
T
tensor-tang 已提交
29

T
tensor-tang 已提交
30 31 32
namespace paddle {
namespace inference {
namespace analysis {
T
tensor-tang 已提交
33

T
tensor-tang 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
struct DataRecord {
  std::vector<int64_t> data;
  std::vector<size_t> lod;
  // for dataset and nextbatch
  size_t batch_iter{0};
  std::vector<std::vector<size_t>> batched_lods;
  std::vector<std::vector<int64_t>> batched_datas;
  std::vector<std::vector<int64_t>> datasets;
  DataRecord() = default;
  explicit DataRecord(const std::string &path, int batch_size = 1) {
    Load(path);
    Prepare(batch_size);
    batch_iter = 0;
  }
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    datasets.resize(0);
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ';', &data);
      std::vector<int64_t> words_ids;
      split_to_int64(data[1], ' ', &words_ids);
      datasets.emplace_back(words_ids);
    }
  }
  void Prepare(int bs) {
    if (bs == 1) {
      batched_datas = datasets;
      for (auto one_sentence : datasets) {
        batched_lods.push_back({0, one_sentence.size()});
      }
    } else {
      std::vector<int64_t> one_batch;
      std::vector<size_t> lod{0};
      int bs_id = 0;
      for (auto one_sentence : datasets) {
        bs_id++;
        one_batch.insert(one_batch.end(), one_sentence.begin(),
                         one_sentence.end());
        lod.push_back(lod.back() + one_sentence.size());
        if (bs_id == bs) {
          bs_id = 0;
          batched_datas.push_back(one_batch);
          batched_lods.push_back(lod);
          one_batch.clear();
          one_batch.resize(0);
          lod.clear();
          lod.resize(0);
          lod.push_back(0);
        }
      }
      if (one_batch.size() != 0) {
        batched_datas.push_back(one_batch);
        batched_lods.push_back(lod);
      }
    }
  }
  DataRecord NextBatch() {
    DataRecord data;
    data.data = batched_datas[batch_iter];
    data.lod = batched_lods[batch_iter];
    batch_iter++;
    if (batch_iter >= batched_datas.size()) {
      batch_iter = 0;
    }
    return data;
  }
};
T
tensor-tang 已提交
105

T
tensor-tang 已提交
106 107 108 109 110 111 112 113 114 115 116 117
void GetOneBatch(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                 int batch_size) {
  auto one_batch = data->NextBatch();
  PaddleTensor input_tensor;
  input_tensor.name = "word";
  input_tensor.shape.assign({static_cast<int>(one_batch.data.size()), 1});
  input_tensor.lod.assign({one_batch.lod});
  input_tensor.dtype = PaddleDType::INT64;
  TensorAssignData<int64_t>(&input_tensor, {one_batch.data});
  PADDLE_ENFORCE_EQ(batch_size, static_cast<int>(one_batch.lod.size() - 1));
  input_slots->assign({input_tensor});
}
T
tensor-tang 已提交
118

T
tensor-tang 已提交
119 120 121 122 123 124
static void PrintTime(const double latency, const int bs, const int repeat) {
  LOG(INFO) << "===========profile result===========";
  LOG(INFO) << "batch_size: " << bs << ", repeat: " << repeat
            << ", avg latency: " << latency / repeat << "ms";
  LOG(INFO) << "=====================================";
}
T
tensor-tang 已提交
125

T
tensor-tang 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
void BenchAllData(const std::string &model_path, const std::string &data_file,
                  const int batch_size, const int repeat) {
  NativeConfig config;
  config.model_dir = model_path;
  config.use_gpu = false;
  config.device = 0;
  config.specify_input_name = true;
  std::vector<PaddleTensor> input_slots, outputs_slots;
  DataRecord data(data_file, batch_size);
  auto predictor =
      CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
  GetOneBatch(&input_slots, &data, batch_size);
  for (int i = 0; i < FLAGS_burning; i++) {
    predictor->Run(input_slots, &outputs_slots);
  }
  Timer timer;
  double sum = 0;
  for (int i = 0; i < repeat; i++) {
    for (size_t bid = 0; bid < data.batched_datas.size(); ++bid) {
      GetOneBatch(&input_slots, &data, batch_size);
      timer.tic();
      predictor->Run(input_slots, &outputs_slots);
      sum += timer.toc();
    }
  }
  PrintTime(sum, batch_size, repeat);
}
T
tensor-tang 已提交
153

T
tensor-tang 已提交
154 155 156 157
const int64_t lac_ref_data[] = {24, 25, 25, 25, 38, 30, 31, 14, 15, 44, 24, 25,
                                25, 25, 25, 25, 44, 24, 25, 25, 25, 36, 42, 43,
                                44, 14, 15, 44, 14, 15, 44, 14, 15, 44, 38, 39,
                                14, 15, 44, 22, 23, 23, 23, 23, 23, 23, 23};
T
tensor-tang 已提交
158

T
tensor-tang 已提交
159 160
void TestLACPrediction(const std::string &model_path,
                       const std::string &data_file, const int batch_size,
T
tensor-tang 已提交
161 162
                       const int repeat, bool test_all_data,
                       bool use_analysis = false) {
T
tensor-tang 已提交
163 164 165 166 167
  NativeConfig config;
  config.model_dir = model_path;
  config.use_gpu = false;
  config.device = 0;
  config.specify_input_name = true;
T
tensor-tang 已提交
168
  std::vector<PaddleTensor> input_slots, outputs_slots, ref_outputs_slots;
T
tensor-tang 已提交
169 170
  DataRecord data(data_file, batch_size);
  GetOneBatch(&input_slots, &data, batch_size);
T
tensor-tang 已提交
171 172 173 174 175 176 177 178 179
  std::unique_ptr<PaddlePredictor> predictor;
  if (use_analysis) {
    predictor =
        CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kAnalysis>(
            config);
  } else {
    predictor =
        CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
  }
T
tensor-tang 已提交
180 181 182 183
  for (int i = 0; i < FLAGS_burning; i++) {
    predictor->Run(input_slots, &outputs_slots);
  }
  Timer timer;
T
tensor-tang 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196
  if (test_all_data) {
    double sum = 0;
    for (int i = 0; i < repeat; i++) {
      for (size_t bid = 0; bid < data.batched_datas.size(); ++bid) {
        GetOneBatch(&input_slots, &data, batch_size);
        timer.tic();
        predictor->Run(input_slots, &outputs_slots);
        sum += timer.toc();
      }
    }
    PrintTime(sum, batch_size, repeat);
    return;
  }
T
tensor-tang 已提交
197 198 199 200 201
  timer.tic();
  for (int i = 0; i < repeat; i++) {
    predictor->Run(input_slots, &outputs_slots);
  }
  PrintTime(timer.toc(), batch_size, repeat);
T
tensor-tang 已提交
202 203 204 205 206 207 208 209 210

  // check result
  if (use_analysis) {
    // run once for comparion as reference
    auto ref_predictor =
        CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
    ref_predictor->Run(input_slots, &ref_outputs_slots);
  }

T
tensor-tang 已提交
211 212 213 214 215 216 217 218 219 220 221
  EXPECT_EQ(outputs_slots.size(), 1UL);
  auto &out = outputs_slots[0];
  size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
                                [](int a, int b) { return a * b; });
  size_t batch1_size = sizeof(lac_ref_data) / sizeof(int64_t);
  PADDLE_ENFORCE_GT(size, 0);
  EXPECT_GE(size, batch1_size);
  int64_t *pdata = static_cast<int64_t *>(out.data.data());
  for (size_t i = 0; i < batch1_size; ++i) {
    EXPECT_EQ(pdata[i], lac_ref_data[i]);
  }
T
tensor-tang 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234

  if (use_analysis) {
    EXPECT_EQ(ref_outputs_slots.size(), outputs_slots.size());
    auto &ref_out = ref_outputs_slots[0];
    size_t ref_size =
        std::accumulate(ref_out.shape.begin(), ref_out.shape.end(), 1,
                        [](int a, int b) { return a * b; });
    EXPECT_EQ(size, ref_size);
    int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
    for (size_t i = 0; i < size; ++i) {
      EXPECT_EQ(pdata_ref[i], pdata[i]);
    }
  }
T
tensor-tang 已提交
235
}
T
tensor-tang 已提交
236

T
tensor-tang 已提交
237 238 239 240 241
TEST(Analyzer_LAC, native) {
  LOG(INFO) << "LAC with native";
  TestLACPrediction(FLAGS_infer_model, FLAGS_infer_data, FLAGS_batch_size,
                    FLAGS_repeat, FLAGS_test_all_data);
}
T
tensor-tang 已提交
242 243 244 245 246 247 248

TEST(Analyzer_LAC, analysis) {
  LOG(INFO) << "LAC with analysis";
  TestLACPrediction(FLAGS_infer_model, FLAGS_infer_data, FLAGS_batch_size,
                    FLAGS_repeat, FLAGS_test_all_data, true);
}

T
tensor-tang 已提交
249 250 251
}  // namespace analysis
}  // namespace inference
}  // namespace paddle