RecurrentGradientMachine.cpp 51.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yu Yang 已提交
15 16
#include "RecurrentGradientMachine.h"
#include <dlfcn.h>
Z
zhangjinchao01 已提交
17
#include <algorithm>
Y
Yu Yang 已提交
18
#include <cmath>
Z
zhangjinchao01 已提交
19 20 21 22
#include <functional>
#include <limits>
#include "NeuralNetwork.h"
#include "paddle/gserver/layers/AgentLayer.h"
Y
Yu Yang 已提交
23 24 25
#include "paddle/utils/Flags.h"
#include "paddle/utils/Stat.h"
#include "paddle/utils/Util.h"
Z
zhangjinchao01 已提交
26

27
DEFINE_string(diy_beam_search_prob_so, "", "the diy beam search cost so");
Z
zhangjinchao01 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

static const char* DIY_CALC_PROB_SYMBOL_NAME = "calc_prob";
static const char* DIY_START_CALC_PROB_SYMBOL_NAME = "start_calc_prob";
static const char* DIY_FINISH_CALC_PROB_SYMBOL_NAME = "finish_calc_prob";

namespace paddle {

/**
 * Start Custom Calculate Probability callback type.
 *
 * @param nNode, nodes: the path will be explored. nNodes is array size.
 *                      nodes is array elements.
 *
 * @return: A custom handler id that will passed to another callback.
 */
typedef int (*DiyStartCalcProbCallback)(size_t nNodes, int* nodes);

/**
 * Doing Custom Calculation of Probability callback type.
 *
 * @param handler: User custom handler. The return value from start calc prob.
 * @param nNode, nodes: Array. The current path.
 * @param curProb: The current log probability that neural network returns.
 *
 * @return: Log probability which user calculated, it will be updated to this
 *          path.
 * @NOTE: Return -INFINITY will DROP this path IMMEDIATELY!!
 */
56 57
typedef real (*DiyCalcProbCallback)(
    int handler, size_t nNodes, int* nodes, real curProb, bool atEos);
Z
zhangjinchao01 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

/**
 * Finish Custom Calculation of Probability callback type.
 *
 * @param handler: User custom handler. The return value from start calc prob.
 */
typedef void (*DiyStopCalcProbCallback)(int handler);

static DiyCalcProbCallback gDiyProbMethod = nullptr;
static DiyStartCalcProbCallback gDiyProbStart = nullptr;
static DiyStopCalcProbCallback gDiyProbStop = nullptr;
static void* gDiyProbHandle = nullptr;

static void exit_diy_prob() { dlclose(gDiyProbHandle); }

template <typename SymbolType>
static inline SymbolType loadDiySymbol(const char* symbolName) {
  void* sym = dlsym(gDiyProbHandle, symbolName);
  CHECK(sym) << "Cannot load symbol " << symbolName << " from "
             << FLAGS_diy_beam_search_prob_so;
  return reinterpret_cast<SymbolType>(sym);
}

Y
Yu Yang 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
static InitFunction __init__diy_prob_method(
    [] {
      std::string soName = FLAGS_diy_beam_search_prob_so;
      if (!soName.empty()) {
        gDiyProbHandle = dlopen(soName.c_str(), RTLD_LAZY);
        CHECK(gDiyProbHandle) << "Cannot Open DIY Prob So " << soName;
        atexit(exit_diy_prob);
        gDiyProbMethod =
            loadDiySymbol<decltype(gDiyProbMethod)>(DIY_CALC_PROB_SYMBOL_NAME);
        gDiyProbStart = loadDiySymbol<decltype(gDiyProbStart)>(
            DIY_START_CALC_PROB_SYMBOL_NAME);
        gDiyProbStop = loadDiySymbol<decltype(gDiyProbStop)>(
            DIY_FINISH_CALC_PROB_SYMBOL_NAME);
      }
    },
    std::numeric_limits<int>::max());
Z
zhangjinchao01 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

class BeamSearchControlCallbacks {
public:
  RecurrentGradientMachine::BeamSearchCandidatesAdjustCallback
      beamSearchCandidateAdjust;
  RecurrentGradientMachine::NormOrDropNodeCallback normOrDropNode;
  RecurrentGradientMachine::DropCallback stopDetermineCandidates;

  //! for gcc46 aggregate initialization is not very well, so we need to
  //! explicit
  BeamSearchControlCallbacks(
      const RecurrentGradientMachine::BeamSearchCandidatesAdjustCallback&
          candidateAdjust,
      const RecurrentGradientMachine::NormOrDropNodeCallback& norm,
      const RecurrentGradientMachine::DropCallback& stop)
      : beamSearchCandidateAdjust(candidateAdjust),
        normOrDropNode(norm),
        stopDetermineCandidates(stop) {}
};

class BeamSearchStatisticsCallbacks {
public:
  RecurrentGradientMachine::EachStepCallback onEachStepStarted;
  RecurrentGradientMachine::EachStepCallback onEachStepStoped;

  BeamSearchStatisticsCallbacks(
      const RecurrentGradientMachine::EachStepCallback& start,
      const RecurrentGradientMachine::EachStepCallback& stop)
      : onEachStepStarted(start), onEachStepStoped(stop) {}
};

RecurrentGradientMachine::RecurrentGradientMachine(
    const std::string& subModelName, NeuralNetwork* rootNetwork)
    : NeuralNetwork(subModelName),
      rootNetwork_(rootNetwork),
      beamSearchCtrlCallbacks_(nullptr),
      beamSearchStatistics_(nullptr) {
  CHECK(!subModelName_.empty());
}

/**
 * bias layer, as input of memory frame 0 will give vector of zeros
 * if bias parameter is not set.
 *
 * boot bias layer create directly in recurrent gradient machine, because:
 *
 * 1. It is only one frame, so it should not be placed in layer group,
 *    which is one instance for every one frame.
 *
 * 2. It is no input layer, so it need resetHeight() before forward(),
 *    and resetHeight() must be called in recurrent gradient machine,
 *    so it's should not be placed in root network.
 */
class BootBiasLayer : public Layer {
protected:
  std::unique_ptr<Weight> biases_;
  IVectorPtr cpuIds_;

public:
  explicit BootBiasLayer(const LayerConfig& config) : Layer(config) {}

Y
Yu Yang 已提交
158 159
  bool init(const LayerMap& layerMap,
            const ParameterMap& parameterMap) override {
Z
zhangjinchao01 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    if (!Layer::init(layerMap, parameterMap)) return false;

    if (biasParameter_) {
      biases_ =
          std::unique_ptr<Weight>(new Weight(1, getSize(), biasParameter_));
    }
    return true;
  }

  void resetHeight(int height) {
    if (config_.has_bos_id()) {  // used as a constant id layerConfig
      IVector::resizeOrCreate(output_.ids, height, useGpu_);
      output_.ids->reset((int)config_.bos_id());
    } else {
      resetOutput(height, getSize());
    }
  }

Y
Yu Yang 已提交
178
  void forward(PassType passType) override {
Z
zhangjinchao01 已提交
179 180 181 182 183 184 185
    if (biases_) {
      MatrixPtr outV = getOutputValue();
      outV->addBias(*(biases_->getW()), 1);
      forwardActivation();
    }
  }

Y
Yu Yang 已提交
186
  void backward(const UpdateCallback& callback) override {
Z
zhangjinchao01 已提交
187 188 189 190 191 192 193 194 195
    if (biases_) {
      backwardActivation();
      biases_->getWGrad()->collectBias(*getOutputGrad(), 1);
      biases_->getParameterPtr()->incUpdate(callback);
    }
  }
};

void RecurrentGradientMachine::init(
196 197 198 199
    const ModelConfig& config,
    ParamInitCallback callback,
    const std::vector<ParameterType>& parameterTypes,
    bool useGpu) {
Z
zhangjinchao01 已提交
200 201 202 203
  NeuralNetwork::init(config, callback, parameterTypes, useGpu);
  useGpu_ = useGpu;

  auto subModelConfig =
204 205
      std::find_if(config.sub_models().begin(),
                   config.sub_models().end(),
Z
zhangjinchao01 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
                   [this](const SubModelConfig& sub_model) {
                     return sub_model.name() == this->subModelName_;
                   });
  CHECK(subModelConfig != config.sub_models().end());
  reversed_ = subModelConfig->reversed();

  inFrameLines_.resize(subModelConfig->in_links_size());
  for (size_t i = 0; i < inFrameLines_.size(); ++i) {
    inFrameLines_[i].linkName = subModelConfig->in_links(i).link_name();
    inFrameLines_[i].inLayer =
        rootNetwork_->getLayer(subModelConfig->in_links(i).layer_name());
  }

  outFrameLines_.resize(subModelConfig->out_links_size());
  for (size_t i = 0; i < outFrameLines_.size(); ++i) {
    auto& linkPair = subModelConfig->out_links(i);
    outFrameLines_[i].layerName = linkPair.layer_name();
    outFrameLines_[i].agentLayer = rootNetwork_->getLayer(linkPair.link_name());
  }

  memoryFrameLines_.resize(subModelConfig->memories_size());
  for (size_t i = 0; i < memoryFrameLines_.size(); ++i) {
    auto& memoryConfig = subModelConfig->memories(i);
    memoryFrameLines_[i].layerName = memoryConfig.layer_name();
    memoryFrameLines_[i].linkName = memoryConfig.link_name();
    auto agentConfig =
232 233
        std::find_if(config.layers().begin(),
                     config.layers().end(),
Z
zhangjinchao01 已提交
234 235 236 237 238 239 240 241 242 243
                     [&memoryConfig](const LayerConfig& layerConfig) {
                       return layerConfig.name() == memoryConfig.link_name();
                     });
    CHECK(agentConfig != config.layers().end());
    if (memoryConfig.has_boot_layer_name()) {
      memoryFrameLines_[i].rootLayer =
          rootNetwork_->getLayer(memoryConfig.boot_layer_name());

      LayerConfig scatterConfig = *agentConfig;
      memoryFrameLines_[i].rootAgent.reset(
244
          new ScatterAgentLayer(scatterConfig));
Z
zhangjinchao01 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
      memoryFrameLines_[i].rootAgent->init(LayerMap(), parameterMap_);

      memoryFrameLines_[i].bootLayer = memoryFrameLines_[i].rootAgent;
    } else {
      LayerConfig biasConfig = *agentConfig;
      if (memoryConfig.has_boot_bias_parameter_name()) {
        biasConfig.set_bias_parameter_name(
            memoryConfig.boot_bias_parameter_name());
        biasConfig.set_active_type(memoryConfig.boot_bias_active_type());
      } else if (memoryConfig.has_boot_with_const_id()) {
        biasConfig.set_bos_id(memoryConfig.boot_with_const_id());
      }
      memoryFrameLines_[i].biasLayer.reset(new BootBiasLayer(biasConfig));
      memoryFrameLines_[i].biasLayer->init(LayerMap(), parameterMap_);

      memoryFrameLines_[i].bootLayer = memoryFrameLines_[i].biasLayer;
    }

    if (subModelConfig->has_generator()) {
      memoryFrameLines_[i].scatterAgents.resize(2);
      for (auto& agent : memoryFrameLines_[i].scatterAgents) {
266
        agent.reset(new ScatterAgentLayer(*agentConfig));
Z
zhangjinchao01 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
        agent->init(LayerMap(), parameterMap_);
      }
    }
  }

  if (subModelConfig->has_generator()) {
    generator_.config = subModelConfig->generator();
    eosFrameLine_.reset(new EosFrameLine);
    maxSequenceLength_ = generator_.config.max_num_frames();
  }

  // get parameters actually used by this Layer Group
  resizeOrCreateFrames(1);
  for (auto& para : frames_[0]->getParameters()) {
    if (para->getSharedCount() > 0) {
      parameterIds_.push_back(para->getID());
    }
  }
  for (auto& para : parameters_) {  // bias layer parameters
    if (para->getSharedCount() > 0) {
      parameterIds_.push_back(para->getID());
    }
  }

  if (subModelConfig->evaluator_names_size() > 0) {
    evaluator_.reset(frames_[0]->makeEvaluator());
  }
}

void RecurrentGradientMachine::resizeOrCreateFrames(int numFrames) {
  if ((size_t)numFrames <= frames_.size()) {
    return;
  }

  frames_.reserve(numFrames);
  for (auto& inFrameLine : inFrameLines_) {
    inFrameLine.agents.reserve(numFrames);
  }
  for (auto& outFrameLine : outFrameLines_) {
    outFrameLine.frames.reserve(numFrames);
  }
  for (auto& memoryFrameLine : memoryFrameLines_) {
    memoryFrameLine.frames.reserve(numFrames);
    memoryFrameLine.agents.reserve(numFrames);
  }
  if (eosFrameLine_) {
    eosFrameLine_->layers.reserve(numFrames);
  }

  ParamInitCallback subParamInitCb = [this](int paramId, Parameter* para) {
    para->enableSharedType(PARAMETER_VALUE,
                           this->parameters_[paramId]->getBuf(PARAMETER_VALUE),
                           this->parameters_[paramId]->getMat(PARAMETER_VALUE));
    para->enableSharedType(
        PARAMETER_GRADIENT,
        this->parameters_[paramId]->getBuf(PARAMETER_GRADIENT),
        this->parameters_[paramId]->getMat(PARAMETER_GRADIENT));
  };

  for (int i = frames_.size(); i < numFrames; ++i) {
    std::unique_ptr<NeuralNetwork> frame(
328
        NeuralNetwork::newNeuralNetwork(subModelName_));
Z
zhangjinchao01 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
    frame->init(config_, subParamInitCb);

    for (auto& inFrameLine : inFrameLines_) {
      inFrameLine.agents.push_back(frame->getLayer(inFrameLine.linkName));
    }

    for (auto& outFrameLine : outFrameLines_) {
      outFrameLine.frames.push_back(frame->getLayer(outFrameLine.layerName));
    }
    for (auto& memoryFrameLine : memoryFrameLines_) {
      memoryFrameLine.frames.push_back(
          frame->getLayer(memoryFrameLine.layerName));
      memoryFrameLine.agents.push_back(
          frame->getLayer(memoryFrameLine.linkName));
    }
    if (eosFrameLine_) {
      eosFrameLine_->layers.push_back(
          frame->getLayer(generator_.config.eos_layer_name()));
    }

    frames_.emplace_back(std::move(frame));
  }
}

void RecurrentGradientMachine::resizeBootFrame(int numSequences) {
  for (auto& memoryFrameLine : memoryFrameLines_) {
    if (memoryFrameLine.biasLayer) {
      auto biasLayer =
          dynamic_cast<BootBiasLayer*>(memoryFrameLine.biasLayer.get());
      CHECK_NOTNULL(biasLayer);
      biasLayer->resetHeight(numSequences);
    } else {  // check input root layer height
      CHECK_EQ(numSequences,
               memoryFrameLine.rootLayer->getOutput().getNumSequences());
    }
  }
}

void RecurrentGradientMachine::prefetch(const std::vector<Argument>& inArgs) {
  LOG(FATAL) << "should not use this function";
}

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
void RecurrentGradientMachine::checkInputConsistency(
    int inlinkId, const std::vector<Argument::SeqInfo>& seqInfo) {
  if (commonSeqInfo_.empty()) {
    commonSeqInfo_.resize(seqInfo.size());
    for (size_t i = 0; i < seqInfo.size(); ++i) {
      commonSeqInfo_[i].topLevelLength = seqInfo[i].topLevelLength;
      commonSeqInfo_[i].seqId = seqInfo[i].seqId;
    }
  } else {
    CHECK_EQ(commonSeqInfo_.size(), seqInfo.size())
        << " RecurrentGroup " << subModelName_ << " input " << inlinkId
        << " has mismatched number of sequences";
    for (size_t i = 0; i < seqInfo.size(); ++i) {
      CHECK_EQ(commonSeqInfo_[i].topLevelLength, seqInfo[i].topLevelLength)
          << " RecurrentGroup " << subModelName_ << " input " << inlinkId
          << " has mismatched sequence length";
      CHECK_EQ(commonSeqInfo_[i].seqId, seqInfo[i].seqId)
          << " RecurrentGroup " << subModelName_ << " input " << inlinkId
          << " has mismatched sequence length";
    }
  }
}
Z
zhangjinchao01 已提交
393

394 395 396 397 398 399
void RecurrentGradientMachine::calcNumSequencesAtEachStep() {
  int numSequences = commonSeqInfo_.size();
  numSeqs_.resize(maxSequenceLength_);
  for (int i = 0; i < numSequences; ++i) {
    for (int j = 0; j < commonSeqInfo_[i].topLevelLength; ++j) {
      numSeqs_[j] = i + 1;
Z
zhangjinchao01 已提交
400 401
    }
  }
402
}
Z
zhangjinchao01 已提交
403

404
void RecurrentGradientMachine::reorganizeInput(PassType passType) {
405 406
  info_.clear();
  info_.resize(inFrameLines_.size());
407

408
  commonSeqInfo_.clear();
409 410
  seqInfos_.clear();
  seqInfos_.resize(inFrameLines_.size());
411

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
  for (size_t i = 0; i < inFrameLines_.size(); i++) {
    const Argument& input = inFrameLines_[i].inLayer->getOutput();
    if (!input.hasSeq()) {
      continue;
    }
    input.getSeqInfo(&seqInfos_[i]);
    checkInputConsistency(i, seqInfos_[i]);
  }
  CHECK(!commonSeqInfo_.empty())
      << "At least one input needs to be sequence or subsequence";
  maxSequenceLength_ = commonSeqInfo_[0].topLevelLength;

  calcNumSequencesAtEachStep();

  for (size_t i = 0; i < inFrameLines_.size(); ++i) {
    const Argument& input = inFrameLines_[i].inLayer->getOutput();
    if (!input.hasSeq()) {
      seqInfos_[i] = commonSeqInfo_;
    }
    createInFrameInfo(i, input, passType);
  }

434 435 436 437 438
  {
    AsyncGpuBlock asyncGpuBlock;

    // inFrameLine select rows in real layer one time
    for (size_t i = 0; i < inFrameLines_.size(); i++) {
439
      selectRowsOneTime(inFrameLines_[i].inLayer,
440
                        info_[i].allIds,
441 442
                        &(inFrameLines_[i].outArg),
                        passType);
443 444
    }
  }
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
}

void RecurrentGradientMachine::reorganizeOutput(PassType passType) {
  calcSequenceStartPositions();
  for (size_t i = 0; i < outFrameLines_.size(); ++i) {
    Info info;
    auto& outFrameLine = outFrameLines_[i];
    ICpuGpuVectorPtr sequenceStartPositions;
    ICpuGpuVectorPtr subSequenceStartPositions;
    createOutFrameInfo(
        outFrameLine, info, sequenceStartPositions, subSequenceStartPositions);
    auto gatherAgent =
        dynamic_cast<GatherAgentLayer*>(outFrameLine.agentLayer.get());
    CHECK_NOTNULL(gatherAgent);
    gatherAgent->copyIdAndSequenceInfo(sequenceStartPositions,
                                       subSequenceStartPositions,
                                       info.allIds,
                                       info.idIndex);
  }
}
Z
zhangjinchao01 已提交
465

466
void RecurrentGradientMachine::connectFrames(PassType passType) {
Z
zhangjinchao01 已提交
467 468 469 470 471
  for (auto& memoryFrameLine : memoryFrameLines_) {
    if (memoryFrameLine.rootAgent) {
      auto scatterAgent =
          dynamic_cast<ScatterAgentLayer*>(memoryFrameLine.rootAgent.get());
      createMemoryFrameInfo(&memoryFrameLine, passType);
472 473 474 475
      scatterAgent->setRealLayerAndOutput(memoryFrameLine.rootLayer,
                                          memoryFrameLine.outArg,
                                          memoryFrameLine.allIds,
                                          /* idIndex */ 0,
476 477 478
                                          memoryFrameLine.allIds->getSize(),
                                          /* handleBackward */ true);
      if (memoryFrameLine.sequenceStartPositions) {
Z
zhangjinchao01 已提交
479 480 481
        int size = memoryFrameLine.sequenceStartPositions->getSize();
        scatterAgent->setSequenceStartPositions(
            memoryFrameLine.sequenceStartPositions,
482 483
            /* seqStartPosIndex */ 0,
            size);
Z
zhangjinchao01 已提交
484 485 486 487 488 489 490
      }
    }
  }

  for (auto& outFrameLine : outFrameLines_) {
    auto gatherAgent =
        dynamic_cast<GatherAgentLayer*>(outFrameLine.agentLayer.get());
491
    gatherAgent->clearRealLayers();
Z
zhangjinchao01 已提交
492 493 494
  }
  for (int i = 0; i < maxSequenceLength_; ++i) {
    // connect in_links
495
    for (size_t j = 0; j < inFrameLines_.size(); ++j) {
496
      Info& info = info_[j];
497
      // idSize denotes the sum number of tokens in each length i
498 499 500
      int idIndex = info.idIndex.empty() ? 0 : info.idIndex[i];
      int idSize = info.idIndex.empty() ? numSeqs_[i]
                                        : info.idIndex[i + 1] - info.idIndex[i];
501
      InFrameLine inFrameLine = inFrameLines_[j];
Z
zhangjinchao01 已提交
502 503 504
      auto scatterAgent =
          dynamic_cast<ScatterAgentLayer*>(inFrameLine.agents[i].get());
      scatterAgent->setRealLayerAndOutput(inFrameLine.inLayer,
505 506
                                          inFrameLine.outArg,
                                          info.allIds,
507 508 509 510
                                          idIndex,
                                          idSize,
                                          i == 0);
      if (info.sequenceStartPositions) {
511
        // size: the length of subsequence
512 513 514
        int size = info.seqStartPosIndex[i + 1] - info.seqStartPosIndex[i];
        scatterAgent->setSequenceStartPositions(
            info.sequenceStartPositions, info.seqStartPosIndex[i], size);
Z
zhangjinchao01 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527
      }
    }

    // connect out_links
    for (auto& outFrameLine : outFrameLines_) {
      auto gatherAgent =
          dynamic_cast<GatherAgentLayer*>(outFrameLine.agentLayer.get());
      gatherAgent->addRealLayer(outFrameLine.frames[i]);
    }
    for (auto& memoryFrameLine : memoryFrameLines_) {
      NeuralNetwork::connect(
          memoryFrameLine.agents[i],
          i == 0 ? memoryFrameLine.bootLayer : memoryFrameLine.frames[i - 1],
528
          numSeqs_[i] /*height of agent*/);
Z
zhangjinchao01 已提交
529 530
    }
  }
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
}

void RecurrentGradientMachine::forward(const std::vector<Argument>& inArgs,
                                       std::vector<Argument>* outArgs,
                                       PassType passType) {
  /* inArgs and outArgs are not used.
     The inputs are inFrameLines_[i].inLayer.
     The outputs are outFramesLines_[i].agentLayer
   */

  if (inFrameLines_.empty() && passType == PASS_TEST) {
    generateSequence();
    return;
  }  // else forward..

  reorganizeInput(passType);
  int numSequences = commonSeqInfo_.size();

  resizeOrCreateFrames(maxSequenceLength_);
  resizeBootFrame(numSequences);

  connectFrames(passType);
Z
zhangjinchao01 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566

  REGISTER_TIMER_INFO("RecurrentFwTime", "RecurrentFwTime");
  // forward
  for (auto& memoryFrameLine : memoryFrameLines_) {
    memoryFrameLine.bootLayer->forward(passType);
  }
  for (int i = 0; i < maxSequenceLength_; ++i) {
    const std::vector<Argument> inArgs;
    std::vector<Argument> outArgs;
    frames_[i]->forward(inArgs, &outArgs, passType);
  }
  if (evaluator_ && passType == PASS_TEST) {
    this->eval(evaluator_.get());
  }
567 568

  reorganizeOutput(passType);
Z
zhangjinchao01 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
}

void RecurrentGradientMachine::backward(const UpdateCallback& callback) {
  REGISTER_TIMER_INFO("RecurrentBwTime", "RecurrentBwTime");
  AsyncGpuBlock asyncGpuBlock;
  for (int i = maxSequenceLength_ - 1; i >= 0; --i) {
    frames_[i]->backward(nullptr);
  }
  for (auto& memoryFrameLine : memoryFrameLines_) {
    memoryFrameLine.bootLayer->backward(nullptr);
  }

  // call printers here so the gradient can be printed
  if (evaluator_) {
    this->eval(evaluator_.get());
  }
}

void RecurrentGradientMachine::forwardBackward(
588 589 590 591
    const std::vector<Argument>& inArgs,
    std::vector<Argument>* outArgs,
    PassType passType,
    const UpdateCallback& callback) {
Z
zhangjinchao01 已提交
592 593 594
  LOG(FATAL) << "should not use this function";
}

Y
Yu Yang 已提交
595
void RecurrentGradientMachine::eval(Evaluator* evaluator) const {
Z
zhangjinchao01 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
  // call printers frame by frame
  for (int i = 0; i < maxSequenceLength_; ++i) {
    LOG(INFO) << "Recurrent Layer Group eval frame " << i << " begin";
    evaluator->eval(*(frames_[i].get()));
    LOG(INFO) << "Recurrent Layer Group eval frame " << i << " end";
  }
}

void RecurrentGradientMachine::registerBeamSearchControlCallbacks(
    const BeamSearchCandidatesAdjustCallback& adjustBeamSearch,
    const NormOrDropNodeCallback& normOrDropNode,
    const DropCallback& stopBeamSearch) {
  this->removeBeamSearchControlCallbacks();
  //! for gcc 46, aggregate initialization is not supported. TAT
  this->beamSearchCtrlCallbacks_ = new BeamSearchControlCallbacks(
      adjustBeamSearch, normOrDropNode, stopBeamSearch);
}

void RecurrentGradientMachine::removeBeamSearchControlCallbacks() {
  if (this->beamSearchCtrlCallbacks_) {
    delete this->beamSearchCtrlCallbacks_;
    this->beamSearchCtrlCallbacks_ = nullptr;
  }
}

void RecurrentGradientMachine::registerBeamSearchStatisticsCallbacks(
    const EachStepCallback& onEachStepStarted,
    const EachStepCallback& onEachStepStoped) {
  this->removeBeamSearchStatisticsCallbacks();
  this->beamSearchStatistics_ =
      new BeamSearchStatisticsCallbacks(onEachStepStarted, onEachStepStoped);
}

void RecurrentGradientMachine::removeBeamSearchStatisticsCallbacks() {
  if (this->beamSearchStatistics_) {
    delete this->beamSearchStatistics_;
    this->beamSearchStatistics_ = nullptr;
  }
}
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766

namespace {
void lenToStarts(std::vector<int>& starts) {
  int pos = 0;
  starts.back() = 0;
  for (auto& start : starts) {
    int tmp = start;
    start = pos;
    pos += tmp;
  }
  starts.back() = pos;
}
}

void RecurrentGradientMachine::calcSequenceStartPositions() {
  std::vector<int> starts(commonSeqInfo_.size() + 1);
  for (auto& seqInfo : commonSeqInfo_) {
    starts[seqInfo.seqId] = seqInfo.topLevelLength;
  }
  lenToStarts(starts);
  ICpuGpuVector::resizeOrCreate(sequenceStartPositions_, starts.size(), false);
  std::copy(starts.begin(),
            starts.end(),
            sequenceStartPositions_->getMutableData(false));
}

void RecurrentGradientMachine::checkOutputConsistency(
    OutFrameLine& outFrameLine) {
  bool hasSeq = outFrameLine.frames[0]->getOutput().hasSeq();
  for (int i = 0; i < maxSequenceLength_; ++i) {
    LayerPtr frame = outFrameLine.frames[i];
    CHECK_EQ(hasSeq, frame->getOutput().hasSeq());
    int numSequences = frame->getOutput().getNumSequences();
    CHECK_EQ(numSeqs_[i], numSequences);
  }
}

void RecurrentGradientMachine::createOutFrameInfo(
    OutFrameLine& outFrameLine,
    Info& info,
    ICpuGpuVectorPtr& sequenceStartPositions,
    ICpuGpuVectorPtr& subSequenceStartPositions) {
  checkOutputConsistency(outFrameLine);

  if (!outFrameLine.frames[0]->getOutput().hasSeq()) {
    createOutFrameInfo_seq(
        outFrameLine, info, sequenceStartPositions, subSequenceStartPositions);
  } else {
    createOutFrameInfo_subseq(
        outFrameLine, info, sequenceStartPositions, subSequenceStartPositions);
  }
}

void RecurrentGradientMachine::createOutFrameInfo_seq(
    OutFrameLine& outFrameLine,
    Info& info,
    ICpuGpuVectorPtr& sequenceStartPositions,
    ICpuGpuVectorPtr& subSequenceStartPositions) {
  std::vector<int> allIds;
  info.idIndex.resize(1, 0);  // first idIndex = 0

  const int* starts = sequenceStartPositions_->getData(false);

  for (int i = 0; i < maxSequenceLength_; ++i) {
    LayerPtr frame = outFrameLine.frames[i];
    size_t numSequences = frame->getOutput().getNumSequences();
    for (size_t j = 0; j < numSequences; ++j) {
      int seqStart = starts[commonSeqInfo_[j].seqId];
      int seqLength = commonSeqInfo_[j].topLevelLength;
      allIds.push_back(reversed_ ? (seqStart + seqLength - 1 - i)
                                 : (seqStart + i));
    }
    info.idIndex.push_back(allIds.size());
  }
  sequenceStartPositions = sequenceStartPositions_;
  copyScattedId(allIds, &info.allIds, allIds.size());
  CHECK_EQ(info.idIndex.size(), static_cast<size_t>(maxSequenceLength_ + 1));
}

void RecurrentGradientMachine::createOutFrameInfo_subseq(
    OutFrameLine& outFrameLine,
    Info& info,
    ICpuGpuVectorPtr& sequenceStartPositions,
    ICpuGpuVectorPtr& subSequenceStartPositions) {
  size_t numSequences = commonSeqInfo_.size();
  std::vector<int> allIds;
  info.idIndex.resize(1, 0);  // first idIndex = 0

  const int* starts = sequenceStartPositions_->getData(false);
  std::vector<int> subStarts(starts[numSequences] + 1);
  for (int i = 0; i < maxSequenceLength_; ++i) {
    LayerPtr frame = outFrameLine.frames[i];
    size_t numSequences = frame->getOutput().getNumSequences();
    const int* seqStarts =
        frame->getOutput().sequenceStartPositions->getData(false);
    for (size_t j = 0; j < numSequences; ++j) {
      subStarts[starts[commonSeqInfo_[j].seqId] + i] =
          seqStarts[j + 1] - seqStarts[j];
    }
  }
  lenToStarts(subStarts);

  for (int i = 0; i < maxSequenceLength_; ++i) {
    LayerPtr frame = outFrameLine.frames[i];
    size_t numSequences = frame->getOutput().getNumSequences();
    for (size_t j = 0; j < numSequences; ++j) {
      int pos = starts[commonSeqInfo_[j].seqId] + i;
      int subSeqStart = subStarts[pos];
      int subSeqEnd = subStarts[pos + 1];
      for (int k = subSeqStart; k < subSeqEnd; ++k) {
        allIds.push_back(k);
      }
    }
    info.idIndex.push_back(allIds.size());
  }

  ICpuGpuVector::resizeOrCreate(
      subSequenceStartPositions, subStarts.size(), false);
  int* cpuSubSequenceStartPositions =
      subSequenceStartPositions->getMutableData(false);
  std::copy(subStarts.begin(), subStarts.end(), cpuSubSequenceStartPositions);
  ICpuGpuVector::resizeOrCreate(
      sequenceStartPositions, numSequences + 1, false);
  int* cpuSequenceStartPositions =
      sequenceStartPositions->getMutableData(false);
  for (size_t i = 0; i <= numSequences; ++i) {
    cpuSequenceStartPositions[i] = subStarts[starts[i]];
  }
  copyScattedId(allIds, &info.allIds, allIds.size());
  CHECK_EQ(info.idIndex.size(), static_cast<size_t>(maxSequenceLength_ + 1));
}

Z
zhangjinchao01 已提交
767 768 769
/* create scattered id infomation for all realLayer of inFrameLines one time.
 * If hasSubseq, will also create scattered sequenceStartPositions infomation
 * for all realLayer of inFrameLines one time.
L
liaogang 已提交
770
 */
771
void RecurrentGradientMachine::createInFrameInfo(int inlinkId,
772
                                                 const Argument& input,
Z
zhangjinchao01 已提交
773
                                                 PassType passType) {
774 775 776 777 778 779 780 781 782 783 784 785
  if (!input.hasSeq()) {
    createInFrameInfo_nonseq(inlinkId, input, passType);
  } else if (!input.hasSubseq()) {
    createInFrameInfo_seq(inlinkId, input, passType);
  } else {
    createInFrameInfo_subseq(inlinkId, input, passType);
  }
}

void RecurrentGradientMachine::createInFrameInfo_nonseq(int inlinkId,
                                                        const Argument& input,
                                                        PassType passType) {
Z
zhangjinchao01 已提交
786
  std::vector<int> allIds;
787

788 789 790
  auto& seqInfo = seqInfos_[inlinkId];
  Info* inlinkInfo = &info_[inlinkId];
  inlinkInfo->idIndex.clear();
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
  for (size_t i = 0; i < seqInfo.size(); ++i) {
    allIds.push_back(seqInfo[i].seqId);
  }
  // copy and check scatterId
  copyScattedId(allIds, &inlinkInfo->allIds, input.getBatchSize());
}

void RecurrentGradientMachine::createInFrameInfo_seq(int inlinkId,
                                                     const Argument& input,
                                                     PassType passType) {
  std::vector<int> allIds;
  auto& seqInfo = seqInfos_[inlinkId];
  Info* inlinkInfo = &info_[inlinkId];
  inlinkInfo->idIndex.resize(1, 0);  // first idIndex = 0

  for (int i = 0; i < maxSequenceLength_; ++i) {
    for (int j = 0; j < numSeqs_[i]; ++j) {
      int seqLength = seqInfo[j].topLevelLength;
      int seqStart = seqInfo[j].seqStart;
      allIds.push_back(reversed_ ? (seqStart + seqLength - 1 - i)
                                 : (seqStart + i));
    }
    inlinkInfo->idIndex.push_back(allIds.size());
  }

  // copy and check scatterId
  copyScattedId(allIds, &inlinkInfo->allIds, input.getBatchSize());
  CHECK_EQ(inlinkInfo->idIndex.size(),
           static_cast<size_t>(maxSequenceLength_ + 1));
}
void RecurrentGradientMachine::createInFrameInfo_subseq(int inlinkId,
                                                        const Argument& input,
                                                        PassType passType) {
  std::vector<int> allIds;

  auto& seqInfo = seqInfos_[inlinkId];
827

828 829
  Info* inlinkInfo = &info_[inlinkId];
  inlinkInfo->idIndex.resize(1, 0);  // first idIndex = 0
830 831 832
  std::vector<int> sequenceStartPositions;
  const int* subSequenceStartPositions = nullptr;

833 834 835
  subSequenceStartPositions = input.subSequenceStartPositions->getData(false);
  inlinkInfo->seqStartPosIndex.clear();
  inlinkInfo->seqStartPosIndex.push_back(0);  // first seqStartPosIndex = 0
836
  for (int i = 0; i < maxSequenceLength_; ++i) {
837 838 839 840 841 842
    sequenceStartPositions.push_back(0);  // first element = 0
    for (int j = 0; j < numSeqs_[i]; ++j) {
      int subSeqStart = subSequenceStartPositions[seqInfo[j].subSeqStart + i];
      int subSeqEnd = subSequenceStartPositions[seqInfo[j].subSeqStart + i + 1];
      for (int k = subSeqStart; k < subSeqEnd; ++k) {
        allIds.push_back(k);
Z
zhangjinchao01 已提交
843
      }
844 845
      sequenceStartPositions.push_back(sequenceStartPositions.back() +
                                       subSeqEnd - subSeqStart);
Z
zhangjinchao01 已提交
846
    }
847
    inlinkInfo->idIndex.push_back(allIds.size());
848
    inlinkInfo->seqStartPosIndex.push_back(sequenceStartPositions.size());
Z
zhangjinchao01 已提交
849
  }
850 851 852 853 854 855 856
  // inFrameLine create sequenceStartPositions one time
  CHECK_EQ(
      sequenceStartPositions.size(),
      static_cast<size_t>(maxSequenceLength_ + input.getNumSubSequences()));
  CHECK_EQ(inlinkInfo->seqStartPosIndex.size(),
           static_cast<size_t>(maxSequenceLength_ + 1));
  createSeqPos(sequenceStartPositions, &inlinkInfo->sequenceStartPositions);
857

Z
zhangjinchao01 已提交
858
  // copy and check scatterId
859 860
  copyScattedId(allIds, &inlinkInfo->allIds, input.getBatchSize());
  CHECK_EQ(inlinkInfo->idIndex.size(),
861
           static_cast<size_t>(maxSequenceLength_ + 1));
Z
zhangjinchao01 已提交
862 863 864 865 866 867 868 869
}

/* like createInFrameInfo, but for all realLayer of memoryFrameLines*/
void RecurrentGradientMachine::createMemoryFrameInfo(
    MemoryFrameLine* memoryFrameLine, PassType passType) {
  const Argument& input = (*memoryFrameLine).rootLayer->getOutput();
  size_t numSequences = input.getNumSequences();
  std::vector<int> allIds;
870 871 872
  bool seqFlag = input.hasSeq();
  CHECK(!input.hasSubseq())
      << "Subsequence boot layer for memory is not supported";
Z
zhangjinchao01 已提交
873 874 875 876 877 878

  if (seqFlag) {  // for sequenceScatterAgentLayer
    std::vector<int> sequenceStartPositions;
    sequenceStartPositions.push_back(0);  // first element = 0
    const int* starts = input.sequenceStartPositions->getData(false);
    for (size_t i = 0; i < numSequences; ++i) {
879
      // memory info adopt info of inlinks[0]
880
      int seqId = seqInfos_[0][i].seqId;
Z
zhangjinchao01 已提交
881 882 883 884
      for (int k = starts[seqId]; k < starts[seqId + 1]; ++k) {
        allIds.push_back(k);
      }
      sequenceStartPositions.push_back(sequenceStartPositions.back() +
885
                                       starts[seqId + 1] - starts[seqId]);
Z
zhangjinchao01 已提交
886 887 888 889 890 891
    }
    createSeqPos(sequenceStartPositions,
                 &(*memoryFrameLine).sequenceStartPositions);

  } else {  // for scatterAgentLayer
    for (size_t i = 0; i < numSequences; ++i) {
892
      allIds.push_back(seqInfos_[0][i].seqId);
Z
zhangjinchao01 已提交
893 894 895 896 897
    }
  }
  // copy and check scatterId
  copyScattedId(allIds, &(*memoryFrameLine).allIds, input.getBatchSize());
  // memoryFrameLine select rows in real layer one time
898 899 900 901
  selectRowsOneTime((*memoryFrameLine).rootLayer,
                    (*memoryFrameLine).allIds,
                    &(*memoryFrameLine).outArg,
                    passType);
Z
zhangjinchao01 已提交
902 903 904
}

void RecurrentGradientMachine::copyScattedId(std::vector<int>& srcIds,
905 906
                                             IVectorPtr* dstIds,
                                             int size) {
Z
zhangjinchao01 已提交
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
  int idSize = srcIds.size();
  CHECK_EQ(idSize, size);
  IVector::resizeOrCreate(*dstIds, idSize, useGpu_);
  (*dstIds)->copyFrom(srcIds.data(), idSize);
  // check
  std::sort(srcIds.begin(), srcIds.end());
  for (int i = 0; i < idSize; ++i) {
    CHECK_EQ(srcIds[i], i);
  }
}

void RecurrentGradientMachine::selectRowsOneTime(LayerPtr layer,
                                                 const IVectorPtr& allIds,
                                                 Argument* arg,
                                                 PassType passType) {
922 923 924 925 926 927
  Argument& src = layer->getOutput();
  if (src.value) {
    const MatrixPtr& realV = src.value;
    int height = realV->getHeight();
    int width = realV->getWidth();
    Matrix::resizeOrCreate(
928
        arg->value, height, width, /* trans */ false, useGpu_);
929 930 931
    arg->value->zeroMem();
    arg->value->selectRows(*realV, *allIds);
    if (passType != PASS_TEST) {
932 933
      Matrix::resizeOrCreate(
          arg->grad, height, width, /* trans */ false, useGpu_);
934 935 936 937 938 939
      arg->grad->zeroMem();
    }
  }
  if (src.ids) {
    IVector::resizeOrCreate(arg->ids, src.ids->getSize(), useGpu_);
    arg->ids->selectFrom(*src.ids, *allIds);
Z
zhangjinchao01 已提交
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
  }
}

void RecurrentGradientMachine::createSeqPos(
    const std::vector<int>& sequenceStartPosition,
    ICpuGpuVectorPtr* sequenceStartPositions) {
  int size = sequenceStartPosition.size();
  const int* data = sequenceStartPosition.data();
  ICpuGpuVector::resizeOrCreate(*sequenceStartPositions, size, false);
  (*sequenceStartPositions)->copyFrom(data, size, false);
}

size_t RecurrentGradientMachine::getGenBatchSize() {
  size_t numSequences = 0;
  for (auto& memoryFrameLine : memoryFrameLines_) {
    if (!memoryFrameLine.rootLayer) continue;
    Argument& bootArg = memoryFrameLine.rootLayer->getOutput();
957
    size_t batchSize = bootArg.getNumSequences();
Z
zhangjinchao01 已提交
958 959 960 961 962 963
    if (numSequences) {
      CHECK_EQ(numSequences, batchSize);
    } else {
      numSequences = batchSize;
    }
  }
964 965 966 967 968
  CHECK(numSequences)
      << "Fail to get batch size in generation. "
         "At least one of the Memory layer MUST have a layer that is NOT in "
         "the layer group to boot it, and this boot layer is used to "
         "decide batch_size in generation process.";
Z
zhangjinchao01 已提交
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
  return numSequences;
}

void RecurrentGradientMachine::generateSequence() {
  CHECK_NOTNULL(eosFrameLine_.get());
  CHECK_GE(outFrameLines_.size(), 1UL);
  size_t numSequences = getGenBatchSize();

  resizeBootFrame(numSequences);
  // We create only two sub-network in generation for alternate use.
  // Thus, we can reduce total memory of output_ in layer forward.
  resizeOrCreateFrames(2);

  // outFrameLines_.size() > 1UL
  dataArgsSize_ = outFrameLines_.size() - 1;
  dataArgs_.resize(dataArgsSize_);
  dataArgsFrame_.clear();
  dataArgsFrame_.resize(dataArgsSize_);

  // connect boot frame memory links
  std::vector<int> ids(numSequences);
990 991 992
  for (size_t i = 0; i < numSequences; ++i) {
    ids[i] = i;
  }
Z
zhangjinchao01 已提交
993 994 995 996
  for (auto& memoryFrameLine : memoryFrameLines_) {
    if (memoryFrameLine.rootAgent) {
      auto scatterAgent =
          dynamic_cast<ScatterAgentLayer*>(memoryFrameLine.rootAgent.get());
997
      scatterAgent->setRealLayer(memoryFrameLine.rootLayer, ids);
Z
zhangjinchao01 已提交
998
    }
999 1000
    NeuralNetwork::connect(
        memoryFrameLine.agents[0], memoryFrameLine.bootLayer, ids.size());
Z
zhangjinchao01 已提交
1001 1002 1003 1004
  }

  // boot layer forward
  AsyncGpuBlock asyncGpuBlock;
1005

Z
zhangjinchao01 已提交
1006 1007 1008 1009 1010 1011
  for (auto& memoryFrameLine : memoryFrameLines_) {
    memoryFrameLine.bootLayer->forward(PASS_TEST);
  }

  // init outArg
  size_t resultNum = generator_.config.num_results_per_sample();
1012 1013
  IVector::resizeOrCreate(
      generator_.outArg.ids,
1014 1015
      generator_.config.max_num_frames() * numSequences * resultNum,
      false);
Z
zhangjinchao01 已提交
1016 1017
  if (resultNum > 1) {
    CHECK_LE(resultNum, static_cast<size_t>(generator_.config.beam_size()));
1018 1019 1020 1021 1022
    Matrix::resizeOrCreate(generator_.outArg.in,
                           /* height */ numSequences,
                           /* width */ resultNum,
                           false,
                           /* useGpu */ false);
Z
zhangjinchao01 已提交
1023 1024
  }
  ICpuGpuVector::resizeOrCreate(generator_.outArg.sequenceStartPositions,
1025 1026
                                numSequences + 1,
                                /* useGpu */ false);
Z
zhangjinchao01 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
  if (getBeamSize() > 1) {
    beamSearch(numSequences);
  } else {
    oneWaySearch(numSequences);
  }
  if (dataArgsSize_) createDataOutlink(batchMachineIdVec_);

  size_t size = generator_.ids.size();
  generator_.outArg.ids->resize(size);
  generator_.outArg.ids->copyFrom(generator_.ids.data(), size);

  OutFrameLine& outFrameLine = outFrameLines_[0];
  auto dataAgent = dynamic_cast<DataLayer*>(outFrameLine.agentLayer.get());
  CHECK_NOTNULL(dataAgent);
  dataAgent->setData(generator_.outArg);
  dataAgent->prefetch();
}

void RecurrentGradientMachine::oneWaySearch(size_t batchSize) {
  OutFrameLine& outFrameLine = outFrameLines_[0];

  // finalPaths_[0] stores the generated results of the
  // entire batch, so its size exactly equals to batchSize.
  finalPaths_.clear();
  finalPaths_.resize(1);
  std::vector<Path>& finalPaths = finalPaths_[0];
  finalPaths.resize(batchSize);

  seqIds_.resize(batchSize);
  std::vector<int> scatterIds;
  for (size_t i = 0; i < batchSize; ++i) {
    finalPaths[i].seqId = i;
    seqIds_[i] = i;
  }

  // forward
  for (int i = 0; i < maxSequenceLength_; ++i) {
    if (i && scatterIds.empty()) break;
    int machineCur = i % 2;
    int machinePrev = (i - 1) % 2;
    // connect memory links
    if (i) {
      seqIds_.clear();
      for (size_t j = 0; j < batchSize; ++j) {
        if (finalPaths[j].seqId != -1) seqIds_.push_back(j);
      }

      for (auto& memoryFrameLine : memoryFrameLines_) {
        auto scatterAgent = dynamic_cast<ScatterAgentLayer*>(
            memoryFrameLine.scatterAgents[machineCur].get());
        scatterAgent->setRealLayer(memoryFrameLine.frames[machinePrev],
1078
                                   scatterIds);
Z
zhangjinchao01 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
        scatterAgent->forward(PASS_TEST);
        NeuralNetwork::connect(memoryFrameLine.agents[machineCur],
                               memoryFrameLine.scatterAgents[machineCur]);
      }
    }
    const std::vector<Argument> inArgs;
    std::vector<Argument> outArgs;
    frames_[machineCur]->forward(inArgs, &outArgs, PASS_TEST);

    const IVectorPtr& idVec = outFrameLine.frames[machineCur]->getOutput().ids;
    for (size_t j = 0; j < seqIds_.size(); ++j) {
      finalPaths[seqIds_[j]].ids.push_back(idVec->getElement(j));
      finalPaths[seqIds_[j]].machineIdVec.push_back(j);
    }

    copyDataOutlinkFrame(machineCur);

    // call value printer
    if (evaluator_) {
      evaluator_->eval(*(frames_[machineCur].get()));
    }
    // check eos
    const IVectorPtr& eosVec =
        eosFrameLine_->layers[machineCur]->getOutput().ids;
    scatterIds.clear();
    for (size_t j = 0; j < seqIds_.size(); ++j) {
      if (eosVec->getElement(j) == 1U) {
        // path.seqId = -1 indicates end of generation
        // of an input sequence
        finalPaths[seqIds_[j]].seqId = -1;
1109 1110 1111
      } else {
        scatterIds.push_back(j);
      }
Z
zhangjinchao01 已提交
1112 1113 1114 1115 1116 1117 1118 1119
    }
  }

  batchMachineIdVec_.clear();
  int* starts = generator_.outArg.sequenceStartPositions->getMutableData(false);
  starts[0] = 0;
  generator_.ids.clear();
  for (size_t i = 0; i < batchSize; ++i) {
1120 1121
    generator_.ids.insert(generator_.ids.end(),
                          finalPaths[i].ids.begin(),
Z
zhangjinchao01 已提交
1122 1123 1124
                          finalPaths[i].ids.end());
    starts[i + 1] = generator_.ids.size();
    batchMachineIdVec_.insert(batchMachineIdVec_.end(),
1125 1126
                              finalPaths[i].machineIdVec.begin(),
                              finalPaths[i].machineIdVec.end());
Z
zhangjinchao01 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
  }
}

void RecurrentGradientMachine::connectPrevFrame(int stepId,
                                                std::vector<Path>& paths) {
  int machineCur = stepId % 2;
  int machinePrev = (stepId - 1) % 2;
  int beam = getBeamSize();
  machineIds_.clear();
  topIds_.clear();
  seqIds_.clear();

  for (size_t j = 0; j < paths.size(); ++j) {
    machineIds_.push_back(paths[j].machineId);
    topIds_.push_back(paths[j].machineId * beam + paths[j].topIndex);
    seqIds_.push_back(paths[j].seqId);
  }

  for (auto& memoryFrameLine : memoryFrameLines_) {
    bool isOutIds = (memoryFrameLine.layerName == outFrameLines_[0].layerName);
    auto scatterAgent = dynamic_cast<ScatterAgentLayer*>(
        memoryFrameLine.scatterAgents[machineCur].get());
    scatterAgent->setRealLayer(memoryFrameLine.frames[machinePrev],
1150
                               isOutIds ? topIds_ : machineIds_);
Z
zhangjinchao01 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
    scatterAgent->forward(PASS_TEST);
    NeuralNetwork::connect(memoryFrameLine.agents[machineCur],
                           memoryFrameLine.scatterAgents[machineCur]);
  }
}

void RecurrentGradientMachine::forwardFrame(int machineCur) {
  // forward
  const std::vector<Argument> inArgs;
  std::vector<Argument> outArgs;
  frames_[machineCur]->forward(inArgs, &outArgs, PASS_TEST);

  copyDataOutlinkFrame(machineCur);

  IVectorPtr& ids = outFrameLines_[0].frames[machineCur]->getOutput().ids;
  MatrixPtr in = outFrameLines_[0].frames[machineCur]->getOutput().in;
  IVectorPtr& eos = eosFrameLine_->layers[machineCur]->getOutput().ids;
  if (useGpu_) {
    IVector::resizeOrCreate(cpuId_, ids->getSize(), false /* useGpu */);
    cpuId_->copyFrom(*ids);
1171 1172 1173 1174 1175
    Matrix::resizeOrCreate(cpuProb_,
                           in->getHeight(),
                           in->getWidth(),
                           false /* trans */,
                           false /* useGpu */);
Z
zhangjinchao01 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
    cpuProb_->copyFrom(*in);
    IVector::resizeOrCreate(cpuEos_, eos->getSize(), false /* useGpu */);
    cpuEos_->copyFrom(*eos);
  } else {
    cpuId_ = ids;
    cpuProb_ = in;
    cpuEos_ = eos;
  }
}

1186 1187
void RecurrentGradientMachine::singlePathExpand(Path& curPath,
                                                size_t curPathId,
1188 1189
                                                std::vector<Path>& newPaths,
                                                size_t expandWidth) {
Z
zhangjinchao01 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
  int calc_id =
      gDiyProbStart ? gDiyProbStart(curPath.ids.size(), curPath.ids.data()) : 0;

  const int* idVec = cpuId_->getData();
  const real* probMat = cpuProb_->getData();
  const int* eosVec = cpuEos_->getData();

  for (size_t k = 0; k < expandWidth; k++) {
    int index = curPathId * expandWidth + k;
    int id = idVec[index];
    real prob = probMat[index];
    /*
     * Ordinarily, beam search greedily expands the most promising expandWidth
     * paths that currently are ALWAYS returned by MaxIdLayer.
     * In one condition, if user customizes the beam search procedure by
     * restricting the expansion within a user defined subset,
     * as a result, MaxIdLayer possibly COULD NOT return expandWidth
     * vaild expansions, and it will use -1 to indicate the end of valid
     * expansion candidates.
     */
    if (id == -1) break;

    real newLogProb = generator_.config.log_prob() ? std::log(prob) : prob;
1213 1214
    Path newPath(
        curPath, id, newLogProb, curPathId /*machineId*/, k /*topIndex*/);
Z
zhangjinchao01 已提交
1215 1216
    if (this->beamSearchCtrlCallbacks_) {
      if (beamSearchCtrlCallbacks_->stopDetermineCandidates(
1217 1218
              newPath.seqId, newPath.ids, newPath.probHistory))
        return;
Z
zhangjinchao01 已提交
1219 1220 1221 1222 1223 1224
    }
    // outFrameLines_.size() > 1UL
    if (dataArgsSize_) {
      newPath.machineIdVec = curPath.machineIdVec;
      newPath.machineIdVec.push_back(curPathId);
    }
1225 1226
    bool atEos =
        eosVec[index] == 1U || newPath.ids.size() >= (size_t)maxSequenceLength_;
Z
zhangjinchao01 已提交
1227 1228 1229 1230 1231 1232 1233
    // adjustNewPath
    newPath.adjustProb(calc_id, atEos);
    if (this->beamSearchCtrlCallbacks_) {
      this->beamSearchCtrlCallbacks_->normOrDropNode(
          newPath.seqId, newPath.ids, newPath.probHistory, &newPath.logProb);
    }
    if (!newPath.isDropable()) {
1234 1235
      atEos ? finalPaths_[curPath.seqId].push_back(newPath)
            : newPaths.push_back(newPath);
Z
zhangjinchao01 已提交
1236 1237 1238
    }
  }  // for expandWidth

1239 1240 1241
  if (gDiyProbStop) {
    gDiyProbStop(calc_id);
  }
Z
zhangjinchao01 已提交
1242 1243
}

1244 1245
void RecurrentGradientMachine::beamExpand(std::vector<Path>& paths,
                                          std::vector<Path>& newPaths) {
Z
zhangjinchao01 已提交
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
  size_t candidatePathCount = paths.size();
  // idVec.size() could be larger than candidatePathCount * beam,
  // so user can drop some node customly.
  CHECK_EQ(cpuId_->getSize() % candidatePathCount, 0UL);
  size_t expandWidth = cpuId_->getSize() / candidatePathCount;

  // iterate over each sequence
  size_t totalExpandCount = 0;
  int prevSeqId = -1;
  int curSeqId = 0;
  for (size_t j = 0; j <= candidatePathCount; j++) {
    // expansions of a single sequence are all processed
1258
    curSeqId = (j < candidatePathCount ? paths[j].seqId : curSeqId + 1);
Z
zhangjinchao01 已提交
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
    if (prevSeqId != -1 && curSeqId != prevSeqId) {
      totalExpandCount += beamShrink(newPaths, prevSeqId, totalExpandCount);
    }
    if (j == candidatePathCount) return;
    singlePathExpand(paths[j], j, newPaths, expandWidth);

    prevSeqId = paths[j].seqId;
  }  // for paths
}

// Drop extra nodes to beam size.
1270 1271 1272 1273 1274 1275 1276 1277
size_t RecurrentGradientMachine::beamShrink(std::vector<Path>& newPaths,
                                            size_t seqId,
                                            size_t totalExpandCount) {
  size_t minNewPathSize =
      std::min(getBeamSize(), newPaths.size() - totalExpandCount);
  if (!minNewPathSize) {
    return 0;
  }
Z
zhangjinchao01 已提交
1278 1279
  std::nth_element(newPaths.begin() + totalExpandCount,
                   newPaths.begin() + totalExpandCount + minNewPathSize,
1280 1281
                   newPaths.end(),
                   Path::greaterPath);
Z
zhangjinchao01 已提交
1282 1283
  newPaths.resize(totalExpandCount + minNewPathSize);

1284 1285 1286 1287 1288 1289
  real minPathLogProb =
      std::min_element(newPaths.end() - minNewPathSize, newPaths.end())
          ->logProb;
  real maxPathLogProb =
      std::max_element(newPaths.end() - minNewPathSize, newPaths.end())
          ->logProb;
Z
zhangjinchao01 已提交
1290 1291 1292

  // Remove the already formed paths that are relatively short
  finalPaths_[seqId].erase(
1293 1294
      std::remove_if(finalPaths_[seqId].begin(),
                     finalPaths_[seqId].end(),
1295
                     [&](Path& p) { return p.logProb < minPathLogProb; }),
Z
zhangjinchao01 已提交
1296 1297 1298 1299 1300 1301 1302 1303
      finalPaths_[seqId].end());
  for (auto p : finalPaths_[seqId]) {
    if (minFinalPathLogProb_[seqId] > p.logProb) {
      minFinalPathLogProb_[seqId] = p.logProb;
    }
  }

  if (finalPaths_[seqId].size() >= getBeamSize() &&
1304
      minFinalPathLogProb_[seqId] >= maxPathLogProb) {
Z
zhangjinchao01 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
    newPaths.resize(totalExpandCount);
    return 0;
  }
  return minNewPathSize;
}

void RecurrentGradientMachine::fillGenOutputs() {
  size_t numResults = generator_.config.num_results_per_sample();
  for (size_t i = 0; i < finalPaths_.size(); ++i) {
    size_t minFinalPathsSize = std::min(numResults, finalPaths_[i].size());
    std::partial_sort(finalPaths_[i].begin(),
                      finalPaths_[i].begin() + minFinalPathsSize,
1317 1318
                      finalPaths_[i].end(),
                      Path::greaterPath);
Z
zhangjinchao01 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
    finalPaths_[i].resize(minFinalPathsSize);
  }

  batchMachineIdVec_.clear();
  generator_.ids.clear();
  if (numResults > 1) {
    real* probs = generator_.outArg.in->getData();
    int* starts =
        generator_.outArg.sequenceStartPositions->getMutableData(false);
    starts[0] = 0;
    for (size_t i = 0; i < finalPaths_.size(); ++i) {
      for (size_t j = 0; j < finalPaths_[i].size(); ++j) {
        Path& path = finalPaths_[i][j];
        generator_.ids.push_back(path.ids.size());  // sequence size
1333 1334
        generator_.ids.insert(
            generator_.ids.end(), path.ids.begin(), path.ids.end());
Z
zhangjinchao01 已提交
1335 1336 1337 1338 1339 1340 1341
        generator_.ids.push_back(-1);  // end of sequence
        probs[i * numResults + j] = path.logProb;

        if (!j && dataArgsSize_) {
          // in beam search, here only reserved the top 1 generated result
          // for out_links that are not the generated word indices.
          batchMachineIdVec_.insert(batchMachineIdVec_.end(),
1342 1343
                                    path.machineIdVec.begin(),
                                    path.machineIdVec.end());
Z
zhangjinchao01 已提交
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
        }
      }
      starts[i + 1] = generator_.ids.size();
    }
  } else {
    for (size_t i = 0; i < finalPaths_.size(); ++i) {
      CHECK(!finalPaths_[i].empty());
      generator_.ids = finalPaths_[i][0].ids;
    }
  }
}

void RecurrentGradientMachine::copyDataOutlinkFrame(size_t machineCur) {
  for (size_t i = 0; i < dataArgsSize_; i++) {
    Argument outFrame;
    outFrame.resizeAndCopyFrom(
        outFrameLines_[i + 1].frames[machineCur]->getOutput(), useGpu_);
    dataArgsFrame_[i].emplace_back(outFrame);
  }
}

void RecurrentGradientMachine::createDataOutlink(
    std::vector<int>& machineIdVec) {
1367 1368
  size_t seqNum =
      getBeamSize() > 1UL ? finalPaths_.size() : finalPaths_[0].size();
Z
zhangjinchao01 已提交
1369 1370
  std::vector<int> starts(seqNum + 1, 0);
  for (size_t i = 0; i < seqNum; ++i) {
1371 1372
    size_t seqLen = getBeamSize() > 1UL ? finalPaths_[i][0].ids.size()
                                        : finalPaths_[0][i].ids.size();
Z
zhangjinchao01 已提交
1373 1374 1375 1376
    starts[i + 1] = starts[i] + seqLen;
  }

  for (size_t i = 0; i < dataArgsSize_; i++) {
1377 1378 1379 1380 1381 1382
    dataArgs_[i].concat(dataArgsFrame_[i],
                        machineIdVec,
                        starts,
                        useGpu_,
                        HPPL_STREAM_1,
                        PASS_TEST);
Z
zhangjinchao01 已提交
1383

1384 1385
    auto dataAgent =
        dynamic_cast<DataLayer*>(outFrameLines_[i + 1].agentLayer.get());
Z
zhangjinchao01 已提交
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
    CHECK_NOTNULL(dataAgent);
    dataAgent->setData(dataArgs_[i]);
  }
}

void RecurrentGradientMachine::beamSearch(size_t batchSize) {
  finalPaths_.clear();
  finalPaths_.resize(batchSize);
  seqIds_.resize(batchSize);
  minFinalPathLogProb_.clear();
  minFinalPathLogProb_.resize(batchSize, 0);

  std::vector<Path> paths;
  std::vector<Path> newPaths;
  for (size_t i = 0; i < batchSize; ++i) {
    paths.push_back(Path(i));
    if (this->beamSearchCtrlCallbacks_) {
      paths.back().recordHistory();
    }
  }

  // restart beam search
  stopBeamSearch_ = false;
  for (int i = 0; i < maxSequenceLength_; ++i) {
    int machineCur = i % 2;
    std::unique_ptr<
        ScopedCallbacks<const RecurrentGradientMachine::EachStepCallback&, int>>
        statisticsBlock;
    if (this->beamSearchStatistics_) {
      auto ptr =
          new ScopedCallbacks<const RecurrentGradientMachine::EachStepCallback&,
                              int>(beamSearchStatistics_->onEachStepStarted,
1418 1419
                                   beamSearchStatistics_->onEachStepStoped,
                                   i);
Z
zhangjinchao01 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
      statisticsBlock.reset(ptr);
    }
    if (stopBeamSearch_) break;

    if (i) connectPrevFrame(i, paths);

    if (this->beamSearchCtrlCallbacks_) {
      std::vector<std::vector<int>*> prefixes;
      prefixes.resize(paths.size());
      std::transform(
Y
Yu Yang 已提交
1430 1431 1432
          paths.begin(), paths.end(), prefixes.begin(), [](const Path& p) {
            return const_cast<std::vector<int>*>(&p.ids);
          });
Z
zhangjinchao01 已提交
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
      beamSearchCtrlCallbacks_->beamSearchCandidateAdjust(
          prefixes, frames_[machineCur].get(), i);
    }

    forwardFrame(machineCur);
    beamExpand(paths, newPaths);
    if (newPaths.empty()) break;

    paths = newPaths;
    newPaths.clear();
  }  // end for machineCur
  fillGenOutputs();
}

void RecurrentGradientMachine::Path::adjustProb(int calc_id, bool atEos) {
  if (gDiyProbMethod) {
    logProb = gDiyProbMethod(calc_id, ids.size(), ids.data(), logProb, atEos);
  }
}

}  // namespace paddle