RecurrentGradientMachine.cpp 47.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yu Yang 已提交
15 16
#include "RecurrentGradientMachine.h"
#include <dlfcn.h>
Z
zhangjinchao01 已提交
17
#include <algorithm>
Y
Yu Yang 已提交
18
#include <cmath>
Z
zhangjinchao01 已提交
19 20 21 22
#include <functional>
#include <limits>
#include "NeuralNetwork.h"
#include "paddle/gserver/layers/AgentLayer.h"
Y
Yu Yang 已提交
23 24 25
#include "paddle/utils/Flags.h"
#include "paddle/utils/Stat.h"
#include "paddle/utils/Util.h"
Z
zhangjinchao01 已提交
26

27
DEFINE_string(diy_beam_search_prob_so, "", "the diy beam search cost so");
Z
zhangjinchao01 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

static const char* DIY_CALC_PROB_SYMBOL_NAME = "calc_prob";
static const char* DIY_START_CALC_PROB_SYMBOL_NAME = "start_calc_prob";
static const char* DIY_FINISH_CALC_PROB_SYMBOL_NAME = "finish_calc_prob";

namespace paddle {

/**
 * Start Custom Calculate Probability callback type.
 *
 * @param nNode, nodes: the path will be explored. nNodes is array size.
 *                      nodes is array elements.
 *
 * @return: A custom handler id that will passed to another callback.
 */
typedef int (*DiyStartCalcProbCallback)(size_t nNodes, int* nodes);

/**
 * Doing Custom Calculation of Probability callback type.
 *
 * @param handler: User custom handler. The return value from start calc prob.
 * @param nNode, nodes: Array. The current path.
 * @param curProb: The current log probability that neural network returns.
 *
 * @return: Log probability which user calculated, it will be updated to this
 *          path.
 * @NOTE: Return -INFINITY will DROP this path IMMEDIATELY!!
 */
56 57
typedef real (*DiyCalcProbCallback)(
    int handler, size_t nNodes, int* nodes, real curProb, bool atEos);
Z
zhangjinchao01 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

/**
 * Finish Custom Calculation of Probability callback type.
 *
 * @param handler: User custom handler. The return value from start calc prob.
 */
typedef void (*DiyStopCalcProbCallback)(int handler);

static DiyCalcProbCallback gDiyProbMethod = nullptr;
static DiyStartCalcProbCallback gDiyProbStart = nullptr;
static DiyStopCalcProbCallback gDiyProbStop = nullptr;
static void* gDiyProbHandle = nullptr;

static void exit_diy_prob() { dlclose(gDiyProbHandle); }

template <typename SymbolType>
static inline SymbolType loadDiySymbol(const char* symbolName) {
  void* sym = dlsym(gDiyProbHandle, symbolName);
  CHECK(sym) << "Cannot load symbol " << symbolName << " from "
             << FLAGS_diy_beam_search_prob_so;
  return reinterpret_cast<SymbolType>(sym);
}

Y
Yu Yang 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
static InitFunction __init__diy_prob_method(
    [] {
      std::string soName = FLAGS_diy_beam_search_prob_so;
      if (!soName.empty()) {
        gDiyProbHandle = dlopen(soName.c_str(), RTLD_LAZY);
        CHECK(gDiyProbHandle) << "Cannot Open DIY Prob So " << soName;
        atexit(exit_diy_prob);
        gDiyProbMethod =
            loadDiySymbol<decltype(gDiyProbMethod)>(DIY_CALC_PROB_SYMBOL_NAME);
        gDiyProbStart = loadDiySymbol<decltype(gDiyProbStart)>(
            DIY_START_CALC_PROB_SYMBOL_NAME);
        gDiyProbStop = loadDiySymbol<decltype(gDiyProbStop)>(
            DIY_FINISH_CALC_PROB_SYMBOL_NAME);
      }
    },
    std::numeric_limits<int>::max());
Z
zhangjinchao01 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

class BeamSearchControlCallbacks {
public:
  RecurrentGradientMachine::BeamSearchCandidatesAdjustCallback
      beamSearchCandidateAdjust;
  RecurrentGradientMachine::NormOrDropNodeCallback normOrDropNode;
  RecurrentGradientMachine::DropCallback stopDetermineCandidates;

  //! for gcc46 aggregate initialization is not very well, so we need to
  //! explicit
  BeamSearchControlCallbacks(
      const RecurrentGradientMachine::BeamSearchCandidatesAdjustCallback&
          candidateAdjust,
      const RecurrentGradientMachine::NormOrDropNodeCallback& norm,
      const RecurrentGradientMachine::DropCallback& stop)
      : beamSearchCandidateAdjust(candidateAdjust),
        normOrDropNode(norm),
        stopDetermineCandidates(stop) {}
};

class BeamSearchStatisticsCallbacks {
public:
  RecurrentGradientMachine::EachStepCallback onEachStepStarted;
  RecurrentGradientMachine::EachStepCallback onEachStepStoped;

  BeamSearchStatisticsCallbacks(
      const RecurrentGradientMachine::EachStepCallback& start,
      const RecurrentGradientMachine::EachStepCallback& stop)
      : onEachStepStarted(start), onEachStepStoped(stop) {}
};

RecurrentGradientMachine::RecurrentGradientMachine(
    const std::string& subModelName, NeuralNetwork* rootNetwork)
    : NeuralNetwork(subModelName),
      rootNetwork_(rootNetwork),
      beamSearchCtrlCallbacks_(nullptr),
      beamSearchStatistics_(nullptr) {
  CHECK(!subModelName_.empty());
}

/**
 * bias layer, as input of memory frame 0 will give vector of zeros
 * if bias parameter is not set.
 *
 * boot bias layer create directly in recurrent gradient machine, because:
 *
 * 1. It is only one frame, so it should not be placed in layer group,
 *    which is one instance for every one frame.
 *
 * 2. It is no input layer, so it need resetHeight() before forward(),
 *    and resetHeight() must be called in recurrent gradient machine,
 *    so it's should not be placed in root network.
 */
class BootBiasLayer : public Layer {
protected:
  std::unique_ptr<Weight> biases_;
  IVectorPtr cpuIds_;

public:
  explicit BootBiasLayer(const LayerConfig& config) : Layer(config) {}

Y
Yu Yang 已提交
158 159
  bool init(const LayerMap& layerMap,
            const ParameterMap& parameterMap) override {
Z
zhangjinchao01 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    if (!Layer::init(layerMap, parameterMap)) return false;

    if (biasParameter_) {
      biases_ =
          std::unique_ptr<Weight>(new Weight(1, getSize(), biasParameter_));
    }
    return true;
  }

  void resetHeight(int height) {
    if (config_.has_bos_id()) {  // used as a constant id layerConfig
      IVector::resizeOrCreate(output_.ids, height, useGpu_);
      output_.ids->reset((int)config_.bos_id());
    } else {
      resetOutput(height, getSize());
    }
  }

Y
Yu Yang 已提交
178
  void forward(PassType passType) override {
Z
zhangjinchao01 已提交
179 180 181 182 183 184 185
    if (biases_) {
      MatrixPtr outV = getOutputValue();
      outV->addBias(*(biases_->getW()), 1);
      forwardActivation();
    }
  }

Y
Yu Yang 已提交
186
  void backward(const UpdateCallback& callback) override {
Z
zhangjinchao01 已提交
187 188 189 190 191 192 193 194 195
    if (biases_) {
      backwardActivation();
      biases_->getWGrad()->collectBias(*getOutputGrad(), 1);
      biases_->getParameterPtr()->incUpdate(callback);
    }
  }
};

void RecurrentGradientMachine::init(
196 197 198 199
    const ModelConfig& config,
    ParamInitCallback callback,
    const std::vector<ParameterType>& parameterTypes,
    bool useGpu) {
Z
zhangjinchao01 已提交
200 201 202 203
  NeuralNetwork::init(config, callback, parameterTypes, useGpu);
  useGpu_ = useGpu;

  auto subModelConfig =
204 205
      std::find_if(config.sub_models().begin(),
                   config.sub_models().end(),
Z
zhangjinchao01 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
                   [this](const SubModelConfig& sub_model) {
                     return sub_model.name() == this->subModelName_;
                   });
  CHECK(subModelConfig != config.sub_models().end());
  reversed_ = subModelConfig->reversed();

  inFrameLines_.resize(subModelConfig->in_links_size());
  for (size_t i = 0; i < inFrameLines_.size(); ++i) {
    inFrameLines_[i].linkName = subModelConfig->in_links(i).link_name();
    inFrameLines_[i].inLayer =
        rootNetwork_->getLayer(subModelConfig->in_links(i).layer_name());
    inFrameLines_[i].hasSubseq = subModelConfig->in_links(i).has_subseq();
  }

  outFrameLines_.resize(subModelConfig->out_links_size());
  for (size_t i = 0; i < outFrameLines_.size(); ++i) {
    auto& linkPair = subModelConfig->out_links(i);
    outFrameLines_[i].layerName = linkPair.layer_name();
    outFrameLines_[i].agentLayer = rootNetwork_->getLayer(linkPair.link_name());
  }

  memoryFrameLines_.resize(subModelConfig->memories_size());
  for (size_t i = 0; i < memoryFrameLines_.size(); ++i) {
    auto& memoryConfig = subModelConfig->memories(i);
    memoryFrameLines_[i].layerName = memoryConfig.layer_name();
    memoryFrameLines_[i].linkName = memoryConfig.link_name();
    auto agentConfig =
233 234
        std::find_if(config.layers().begin(),
                     config.layers().end(),
Z
zhangjinchao01 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
                     [&memoryConfig](const LayerConfig& layerConfig) {
                       return layerConfig.name() == memoryConfig.link_name();
                     });
    CHECK(agentConfig != config.layers().end());
    if (memoryConfig.has_boot_layer_name()) {
      memoryFrameLines_[i].rootLayer =
          rootNetwork_->getLayer(memoryConfig.boot_layer_name());

      LayerConfig scatterConfig = *agentConfig;
      memoryFrameLines_[i].is_sequence = memoryConfig.is_sequence();
      memoryFrameLines_[i].rootAgent.reset(
          memoryConfig.is_sequence()
              ? new SequenceScatterAgentLayer(scatterConfig)
              : new ScatterAgentLayer(scatterConfig));
      memoryFrameLines_[i].rootAgent->init(LayerMap(), parameterMap_);

      memoryFrameLines_[i].bootLayer = memoryFrameLines_[i].rootAgent;
    } else {
      LayerConfig biasConfig = *agentConfig;
      if (memoryConfig.has_boot_bias_parameter_name()) {
        biasConfig.set_bias_parameter_name(
            memoryConfig.boot_bias_parameter_name());
        biasConfig.set_active_type(memoryConfig.boot_bias_active_type());
      } else if (memoryConfig.has_boot_with_const_id()) {
        biasConfig.set_bos_id(memoryConfig.boot_with_const_id());
      }
      memoryFrameLines_[i].biasLayer.reset(new BootBiasLayer(biasConfig));
      memoryFrameLines_[i].biasLayer->init(LayerMap(), parameterMap_);

      memoryFrameLines_[i].bootLayer = memoryFrameLines_[i].biasLayer;
    }

    if (subModelConfig->has_generator()) {
      memoryFrameLines_[i].scatterAgents.resize(2);
      for (auto& agent : memoryFrameLines_[i].scatterAgents) {
        agent.reset(memoryConfig.is_sequence()
                        ? new SequenceScatterAgentLayer(*agentConfig)
                        : new ScatterAgentLayer(*agentConfig));
        agent->init(LayerMap(), parameterMap_);
      }
    }
  }

  if (subModelConfig->has_generator()) {
    generator_.config = subModelConfig->generator();
    eosFrameLine_.reset(new EosFrameLine);
    maxSequenceLength_ = generator_.config.max_num_frames();
  }

  // get parameters actually used by this Layer Group
  resizeOrCreateFrames(1);
  for (auto& para : frames_[0]->getParameters()) {
    if (para->getSharedCount() > 0) {
      parameterIds_.push_back(para->getID());
    }
  }
  for (auto& para : parameters_) {  // bias layer parameters
    if (para->getSharedCount() > 0) {
      parameterIds_.push_back(para->getID());
    }
  }

  if (subModelConfig->evaluator_names_size() > 0) {
    evaluator_.reset(frames_[0]->makeEvaluator());
  }
300 301

  targetInfoInlinkId_ = subModelConfig->target_inlinkid();
Z
zhangjinchao01 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
}

void RecurrentGradientMachine::resizeOrCreateFrames(int numFrames) {
  if ((size_t)numFrames <= frames_.size()) {
    return;
  }

  frames_.reserve(numFrames);
  for (auto& inFrameLine : inFrameLines_) {
    inFrameLine.agents.reserve(numFrames);
  }
  for (auto& outFrameLine : outFrameLines_) {
    outFrameLine.frames.reserve(numFrames);
  }
  for (auto& memoryFrameLine : memoryFrameLines_) {
    memoryFrameLine.frames.reserve(numFrames);
    memoryFrameLine.agents.reserve(numFrames);
  }
  if (eosFrameLine_) {
    eosFrameLine_->layers.reserve(numFrames);
  }

  ParamInitCallback subParamInitCb = [this](int paramId, Parameter* para) {
    para->enableSharedType(PARAMETER_VALUE,
                           this->parameters_[paramId]->getBuf(PARAMETER_VALUE),
                           this->parameters_[paramId]->getMat(PARAMETER_VALUE));
    para->enableSharedType(
        PARAMETER_GRADIENT,
        this->parameters_[paramId]->getBuf(PARAMETER_GRADIENT),
        this->parameters_[paramId]->getMat(PARAMETER_GRADIENT));
  };

  for (int i = frames_.size(); i < numFrames; ++i) {
    std::unique_ptr<NeuralNetwork> frame(
336
        NeuralNetwork::newNeuralNetwork(subModelName_));
Z
zhangjinchao01 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
    frame->init(config_, subParamInitCb);

    for (auto& inFrameLine : inFrameLines_) {
      inFrameLine.agents.push_back(frame->getLayer(inFrameLine.linkName));
    }

    for (auto& outFrameLine : outFrameLines_) {
      outFrameLine.frames.push_back(frame->getLayer(outFrameLine.layerName));
    }
    for (auto& memoryFrameLine : memoryFrameLines_) {
      memoryFrameLine.frames.push_back(
          frame->getLayer(memoryFrameLine.layerName));
      memoryFrameLine.agents.push_back(
          frame->getLayer(memoryFrameLine.linkName));
    }
    if (eosFrameLine_) {
      eosFrameLine_->layers.push_back(
          frame->getLayer(generator_.config.eos_layer_name()));
    }

    frames_.emplace_back(std::move(frame));
  }
}

void RecurrentGradientMachine::resizeBootFrame(int numSequences) {
  for (auto& memoryFrameLine : memoryFrameLines_) {
    if (memoryFrameLine.biasLayer) {
      auto biasLayer =
          dynamic_cast<BootBiasLayer*>(memoryFrameLine.biasLayer.get());
      CHECK_NOTNULL(biasLayer);
      biasLayer->resetHeight(numSequences);
    } else {  // check input root layer height
      CHECK_EQ(numSequences,
               memoryFrameLine.rootLayer->getOutput().getNumSequences());
    }
  }
}

void RecurrentGradientMachine::prefetch(const std::vector<Argument>& inArgs) {
  LOG(FATAL) << "should not use this function";
}

void RecurrentGradientMachine::forward(const std::vector<Argument>& inArgs,
                                       std::vector<Argument>* outArgs,
                                       PassType passType) {
  if (inFrameLines_.empty() && passType == PASS_TEST) {
    generateSequence();
    return;
  }  // else forward..

  const Argument& input = inFrameLines_[0].inLayer->getOutput();
  CHECK(input.sequenceStartPositions);
  int batchSize = input.getBatchSize();
  size_t numSequences = input.getNumSequences();
  const int* starts = input.sequenceStartPositions->getData(false);
  bool hasSubseq = input.hasSubseq();
393 394 395 396 397 398 399 400 401 402

  // In case of !hasSubseq or targetInfoInlinkId_ == -1, all inlinks share the
  // same inframe info
  bool shareInlinkInfo = !hasSubseq || targetInfoInlinkId_ == -1;

  // Defaultly, share info with the first inlink
  if (shareInlinkInfo) {
    targetInfoInlinkId_ = 0;
  }

Z
zhangjinchao01 已提交
403 404 405 406 407 408 409 410 411 412 413 414
  // check hasSubseq in both config and input are the same
  CHECK_EQ(hasSubseq, inFrameLines_[0].hasSubseq);

  CHECK_EQ(starts[numSequences], batchSize);
  CHECK(input.sequenceStartPositions);

  // check other inputs has same sequence length and start
  for (size_t i = 1; i < inFrameLines_.size(); ++i) {
    const Argument& input1 = inFrameLines_[i].inLayer->getOutput();
    CHECK_EQ((size_t)input1.getNumSequences(), numSequences);
    // check all inputs should have same hasSubseq flag
    CHECK_EQ(input.hasSubseq(), inFrameLines_[0].hasSubseq);
415 416 417 418 419 420 421 422

    // if shareInlinkInfo, checks:
    // 1. all inlinks have same number of total tokens
    // 2. all inlinks have same number of tokens for each sentence of each
    //    sample. If hasSubseq, one sample has multiple sentence, else, one
    //    sample is one sentence
    if (shareInlinkInfo) {
      CHECK_EQ(input1.getBatchSize(), batchSize);
423 424
      CHECK(std::equal(starts,
                       starts + numSequences + 1,
425 426
                       input1.sequenceStartPositions->getData(false)));
    }
Z
zhangjinchao01 已提交
427 428 429 430 431 432 433 434 435 436 437
  }

  if (hasSubseq) {
    CHECK(input.subSequenceStartPositions);
    size_t numSubSequences = input.getNumSubSequences();
    const int* subStarts = input.subSequenceStartPositions->getData(false);
    CHECK_EQ(subStarts[numSubSequences], batchSize);
    // if hasSubseq, check other inputs has same sub-sequence and sub-start
    for (size_t i = 1; i < inFrameLines_.size(); ++i) {
      const Argument& input1 = inFrameLines_[i].inLayer->getOutput();
      CHECK_EQ((size_t)input1.getNumSubSequences(), numSubSequences);
438
      if (shareInlinkInfo) {
439 440
        CHECK(std::equal(subStarts,
                         subStarts + numSubSequences + 1,
441 442
                         input1.subSequenceStartPositions->getData(false)));
      }
Z
zhangjinchao01 已提交
443 444 445
    }
  }

446 447
  info_.clear();
  info_.resize(inFrameLines_.size());
448 449 450

  seqInfos_.clear();
  seqInfos_.resize(inFrameLines_.size());
451 452 453 454 455 456

  {
    AsyncGpuBlock asyncGpuBlock;
    // if shareInlinkInfo, only calculate info of the first inlink
    // else, calculate info for each inlink
    if (shareInlinkInfo) {
457 458
      input.getSeqInfo(&seqInfos_[0]);
      maxSequenceLength_ = seqInfos_[0][0].topLevelLength;
459 460 461 462
      createInFrameInfo(0, input, passType);
    } else {
      for (size_t i = 0; i < inFrameLines_.size(); i++) {
        const Argument& input1 = inFrameLines_[i].inLayer->getOutput();
463 464
        input1.getSeqInfo(&seqInfos_[i]);
        maxSequenceLength_ = seqInfos_[i][0].topLevelLength;
465 466 467 468 469 470 471
        createInFrameInfo(i, input1, passType);
      }
    }

    // inFrameLine select rows in real layer one time
    for (size_t i = 0; i < inFrameLines_.size(); i++) {
      int curInlinkId = shareInlinkInfo ? 0 : i;
472 473 474 475
      selectRowsOneTime(inFrameLines_[i].inLayer,
                        info_[curInlinkId].allIds,
                        &(inFrameLines_[i].outArg),
                        passType);
476 477
    }
  }
Z
zhangjinchao01 已提交
478 479 480 481 482 483 484 485
  resizeOrCreateFrames(maxSequenceLength_);
  resizeBootFrame(numSequences);

  for (auto& memoryFrameLine : memoryFrameLines_) {
    if (memoryFrameLine.rootAgent) {
      auto scatterAgent =
          dynamic_cast<ScatterAgentLayer*>(memoryFrameLine.rootAgent.get());
      createMemoryFrameInfo(&memoryFrameLine, passType);
486 487 488 489 490
      scatterAgent->setRealLayerAndOutput(memoryFrameLine.rootLayer,
                                          memoryFrameLine.outArg,
                                          memoryFrameLine.allIds,
                                          /* idIndex */ 0,
                                          memoryFrameLine.allIds->getSize());
Z
zhangjinchao01 已提交
491 492 493 494
      if (memoryFrameLine.is_sequence) {  // memoryConfig is sequence
        int size = memoryFrameLine.sequenceStartPositions->getSize();
        scatterAgent->setSequenceStartPositions(
            memoryFrameLine.sequenceStartPositions,
495 496
            /* seqStartPosIndex */ 0,
            size);
Z
zhangjinchao01 已提交
497 498 499 500 501 502 503 504
      }
    }
  }

  for (auto& outFrameLine : outFrameLines_) {
    auto gatherAgent =
        dynamic_cast<GatherAgentLayer*>(outFrameLine.agentLayer.get());
    CHECK_NOTNULL(gatherAgent);
505 506
    gatherAgent->copyIdAndSequenceInfo(input,
                                       info_[targetInfoInlinkId_].allIds,
507
                                       info_[targetInfoInlinkId_].idIndex);
Z
zhangjinchao01 已提交
508 509 510
  }

  for (int i = 0; i < maxSequenceLength_; ++i) {
511
    int idSize = 0;
Z
zhangjinchao01 已提交
512
    // connect in_links
513
    for (size_t j = 0; j < inFrameLines_.size(); ++j) {
514
      Info& info = info_[shareInlinkInfo ? 0 : j];
515
      // idSize denotes the sum number of tokens in each length i
516
      idSize = info.idIndex[i + 1] - info.idIndex[i];
517
      InFrameLine inFrameLine = inFrameLines_[j];
Z
zhangjinchao01 已提交
518 519 520
      auto scatterAgent =
          dynamic_cast<ScatterAgentLayer*>(inFrameLine.agents[i].get());
      scatterAgent->setRealLayerAndOutput(inFrameLine.inLayer,
521 522 523 524
                                          inFrameLine.outArg,
                                          info.allIds,
                                          info.idIndex[i],
                                          idSize);
Z
zhangjinchao01 已提交
525
      if (hasSubseq) {
526
        // size: the length of subsequence
527 528 529
        int size = info.seqStartPosIndex[i + 1] - info.seqStartPosIndex[i];
        scatterAgent->setSequenceStartPositions(
            info.sequenceStartPositions, info.seqStartPosIndex[i], size);
Z
zhangjinchao01 已提交
530 531 532 533 534 535 536 537 538 539
      }
    }

    // connect out_links
    for (auto& outFrameLine : outFrameLines_) {
      auto gatherAgent =
          dynamic_cast<GatherAgentLayer*>(outFrameLine.agentLayer.get());
      gatherAgent->addRealLayer(outFrameLine.frames[i]);
    }
    // connect memory links
540 541 542 543
    // Adopt info_[0].idIndex because seq which has_subseq=True
    // doesn't support Memory with !hasSubseq bootlayer;
    // And inlinks that !hasSubSeq must have same inlink length.
    idSize = info_[0].idIndex[i + 1] - info_[0].idIndex[i];
Z
zhangjinchao01 已提交
544 545 546 547
    for (auto& memoryFrameLine : memoryFrameLines_) {
      NeuralNetwork::connect(
          memoryFrameLine.agents[i],
          i == 0 ? memoryFrameLine.bootLayer : memoryFrameLine.frames[i - 1],
548
          numSeqs_[i] /*height of agent*/);
Z
zhangjinchao01 已提交
549 550 551 552 553 554 555 556 557 558 559 560
    }
  }

  REGISTER_TIMER_INFO("RecurrentFwTime", "RecurrentFwTime");
  // forward
  for (auto& memoryFrameLine : memoryFrameLines_) {
    memoryFrameLine.bootLayer->forward(passType);
  }
  for (int i = 0; i < maxSequenceLength_; ++i) {
    const std::vector<Argument> inArgs;
    std::vector<Argument> outArgs;
    frames_[i]->forward(inArgs, &outArgs, passType);
561 562 563
    if (hasSubseq) {
      for (auto& outFrameLine : outFrameLines_) {
        CHECK(outFrameLine.frames[i]->getOutput().sequenceStartPositions)
564
            << "In hierachical RNN, all out links should be from sequences.";
565 566
      }
    }
Z
zhangjinchao01 已提交
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
  }
  if (evaluator_ && passType == PASS_TEST) {
    this->eval(evaluator_.get());
  }
}

void RecurrentGradientMachine::backward(const UpdateCallback& callback) {
  REGISTER_TIMER_INFO("RecurrentBwTime", "RecurrentBwTime");
  AsyncGpuBlock asyncGpuBlock;
  for (int i = maxSequenceLength_ - 1; i >= 0; --i) {
    frames_[i]->backward(nullptr);
  }
  for (auto& memoryFrameLine : memoryFrameLines_) {
    memoryFrameLine.bootLayer->backward(nullptr);
  }

  // call printers here so the gradient can be printed
  if (evaluator_) {
    this->eval(evaluator_.get());
  }
}

void RecurrentGradientMachine::forwardBackward(
590 591 592 593
    const std::vector<Argument>& inArgs,
    std::vector<Argument>* outArgs,
    PassType passType,
    const UpdateCallback& callback) {
Z
zhangjinchao01 已提交
594 595 596
  LOG(FATAL) << "should not use this function";
}

Y
Yu Yang 已提交
597
void RecurrentGradientMachine::eval(Evaluator* evaluator) const {
Z
zhangjinchao01 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
  // call printers frame by frame
  for (int i = 0; i < maxSequenceLength_; ++i) {
    LOG(INFO) << "Recurrent Layer Group eval frame " << i << " begin";
    evaluator->eval(*(frames_[i].get()));
    LOG(INFO) << "Recurrent Layer Group eval frame " << i << " end";
  }
}

void RecurrentGradientMachine::registerBeamSearchControlCallbacks(
    const BeamSearchCandidatesAdjustCallback& adjustBeamSearch,
    const NormOrDropNodeCallback& normOrDropNode,
    const DropCallback& stopBeamSearch) {
  this->removeBeamSearchControlCallbacks();
  //! for gcc 46, aggregate initialization is not supported. TAT
  this->beamSearchCtrlCallbacks_ = new BeamSearchControlCallbacks(
      adjustBeamSearch, normOrDropNode, stopBeamSearch);
}

void RecurrentGradientMachine::removeBeamSearchControlCallbacks() {
  if (this->beamSearchCtrlCallbacks_) {
    delete this->beamSearchCtrlCallbacks_;
    this->beamSearchCtrlCallbacks_ = nullptr;
  }
}

void RecurrentGradientMachine::registerBeamSearchStatisticsCallbacks(
    const EachStepCallback& onEachStepStarted,
    const EachStepCallback& onEachStepStoped) {
  this->removeBeamSearchStatisticsCallbacks();
  this->beamSearchStatistics_ =
      new BeamSearchStatisticsCallbacks(onEachStepStarted, onEachStepStoped);
}

void RecurrentGradientMachine::removeBeamSearchStatisticsCallbacks() {
  if (this->beamSearchStatistics_) {
    delete this->beamSearchStatistics_;
    this->beamSearchStatistics_ = nullptr;
  }
}
/* create scattered id infomation for all realLayer of inFrameLines one time.
 * If hasSubseq, will also create scattered sequenceStartPositions infomation
 * for all realLayer of inFrameLines one time.
*/
641

642
void RecurrentGradientMachine::createInFrameInfo(int inlinkId,
643
                                                 const Argument& input,
Z
zhangjinchao01 已提交
644 645
                                                 PassType passType) {
  bool hasSubseq = input.hasSubseq();
646
  // numSequences: # samples(sequences) in a batch
Z
zhangjinchao01 已提交
647 648
  size_t numSequences = input.getNumSequences();
  std::vector<int> allIds;
649

650 651
  auto& seqInfo = seqInfos_[inlinkId];

652
  numSeqs_.clear();
653 654 655 656 657 658 659
  Info* inlinkInfo = &info_[inlinkId];
  inlinkInfo->idIndex.clear();
  inlinkInfo->idIndex.push_back(0);  // first idIndex = 0

  std::vector<int> sequenceStartPositions;
  const int* subSequenceStartPositions = nullptr;

660 661
  if (hasSubseq) {  // for sequenceScatterAgentLayer
    subSequenceStartPositions = input.subSequenceStartPositions->getData(false);
662 663 664 665 666 667
    inlinkInfo->seqStartPosIndex.clear();
    inlinkInfo->seqStartPosIndex.push_back(0);  // first seqStartPosIndex = 0
  }
  // maxSequenceLength_: max topLevelLength in allsamples
  for (int i = 0; i < maxSequenceLength_; ++i) {
    if (hasSubseq) {
668
      sequenceStartPositions.push_back(0);  // first element = 0
Z
zhangjinchao01 已提交
669
    }
670 671 672 673 674 675 676 677 678 679 680 681 682
    int numSeqs = 0;
    for (size_t j = 0; j < numSequences; ++j) {
      int seqLength = seqInfo[j].topLevelLength;
      if (i >= seqLength) {
        break;
      }
      ++numSeqs;
      if (hasSubseq) {
        int subSeqStart = subSequenceStartPositions[seqInfo[j].subSeqStart + i];
        int subSeqEnd =
            subSequenceStartPositions[seqInfo[j].subSeqStart + i + 1];
        for (int k = subSeqStart; k < subSeqEnd; ++k) {
          allIds.push_back(k);
Z
zhangjinchao01 已提交
683
        }
684 685 686 687
        sequenceStartPositions.push_back(sequenceStartPositions.back() +
                                         subSeqEnd - subSeqStart);
      } else {
        int seqStart = seqInfo[j].seqStart;
Z
zhangjinchao01 已提交
688 689 690 691
        allIds.push_back(reversed_ ? (seqStart + seqLength - 1 - i)
                                   : (seqStart + i));
      }
    }
692 693 694 695 696 697 698 699
    inlinkInfo->idIndex.push_back(allIds.size());
    numSeqs_.push_back(numSeqs);
    if (hasSubseq) {
      inlinkInfo->seqStartPosIndex.push_back(sequenceStartPositions.size());
    }
  }
  if (hasSubseq) {
    // inFrameLine create sequenceStartPositions one time
700 701 702
    CHECK_EQ(
        sequenceStartPositions.size(),
        static_cast<size_t>(maxSequenceLength_ + input.getNumSubSequences()));
703 704 705
    CHECK_EQ(inlinkInfo->seqStartPosIndex.size(),
             static_cast<size_t>(maxSequenceLength_ + 1));
    createSeqPos(sequenceStartPositions, &inlinkInfo->sequenceStartPositions);
Z
zhangjinchao01 已提交
706
  }
707

Z
zhangjinchao01 已提交
708
  // copy and check scatterId
709 710
  copyScattedId(allIds, &inlinkInfo->allIds, input.getBatchSize());
  CHECK_EQ(inlinkInfo->idIndex.size(),
711
           static_cast<size_t>(maxSequenceLength_ + 1));
Z
zhangjinchao01 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
}

/* like createInFrameInfo, but for all realLayer of memoryFrameLines*/
void RecurrentGradientMachine::createMemoryFrameInfo(
    MemoryFrameLine* memoryFrameLine, PassType passType) {
  const Argument& input = (*memoryFrameLine).rootLayer->getOutput();
  size_t numSequences = input.getNumSequences();
  std::vector<int> allIds;
  bool seqFlag = (*memoryFrameLine).is_sequence;

  if (seqFlag) {  // for sequenceScatterAgentLayer
    CHECK(input.sequenceStartPositions)
        << "boot layer must be a sequence when is_sequence = true";
    std::vector<int> sequenceStartPositions;
    sequenceStartPositions.push_back(0);  // first element = 0
    const int* starts = input.sequenceStartPositions->getData(false);
    for (size_t i = 0; i < numSequences; ++i) {
729
      // memory info adopt info of inlinks[0]
730
      int seqId = seqInfos_[0][i].seqId;
Z
zhangjinchao01 已提交
731 732 733 734
      for (int k = starts[seqId]; k < starts[seqId + 1]; ++k) {
        allIds.push_back(k);
      }
      sequenceStartPositions.push_back(sequenceStartPositions.back() +
735
                                       starts[seqId + 1] - starts[seqId]);
Z
zhangjinchao01 已提交
736 737 738 739 740 741
    }
    createSeqPos(sequenceStartPositions,
                 &(*memoryFrameLine).sequenceStartPositions);

  } else {  // for scatterAgentLayer
    for (size_t i = 0; i < numSequences; ++i) {
742
      allIds.push_back(seqInfos_[0][i].seqId);
Z
zhangjinchao01 已提交
743 744 745 746 747
    }
  }
  // copy and check scatterId
  copyScattedId(allIds, &(*memoryFrameLine).allIds, input.getBatchSize());
  // memoryFrameLine select rows in real layer one time
748 749 750 751
  selectRowsOneTime((*memoryFrameLine).rootLayer,
                    (*memoryFrameLine).allIds,
                    &(*memoryFrameLine).outArg,
                    passType);
Z
zhangjinchao01 已提交
752 753 754
}

void RecurrentGradientMachine::copyScattedId(std::vector<int>& srcIds,
755 756
                                             IVectorPtr* dstIds,
                                             int size) {
Z
zhangjinchao01 已提交
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
  int idSize = srcIds.size();
  CHECK_EQ(idSize, size);
  IVector::resizeOrCreate(*dstIds, idSize, useGpu_);
  (*dstIds)->copyFrom(srcIds.data(), idSize);
  // check
  std::sort(srcIds.begin(), srcIds.end());
  for (int i = 0; i < idSize; ++i) {
    CHECK_EQ(srcIds[i], i);
  }
}

void RecurrentGradientMachine::selectRowsOneTime(LayerPtr layer,
                                                 const IVectorPtr& allIds,
                                                 Argument* arg,
                                                 PassType passType) {
772 773 774 775 776 777
  Argument& src = layer->getOutput();
  if (src.value) {
    const MatrixPtr& realV = src.value;
    int height = realV->getHeight();
    int width = realV->getWidth();
    Matrix::resizeOrCreate(
778
        arg->value, height, width, /* trans */ false, useGpu_);
779 780 781
    arg->value->zeroMem();
    arg->value->selectRows(*realV, *allIds);
    if (passType != PASS_TEST) {
782 783
      Matrix::resizeOrCreate(
          arg->grad, height, width, /* trans */ false, useGpu_);
784 785 786 787 788 789
      arg->grad->zeroMem();
    }
  }
  if (src.ids) {
    IVector::resizeOrCreate(arg->ids, src.ids->getSize(), useGpu_);
    arg->ids->selectFrom(*src.ids, *allIds);
Z
zhangjinchao01 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
  }
}

void RecurrentGradientMachine::createSeqPos(
    const std::vector<int>& sequenceStartPosition,
    ICpuGpuVectorPtr* sequenceStartPositions) {
  int size = sequenceStartPosition.size();
  const int* data = sequenceStartPosition.data();
  ICpuGpuVector::resizeOrCreate(*sequenceStartPositions, size, false);
  (*sequenceStartPositions)->copyFrom(data, size, false);
}

size_t RecurrentGradientMachine::getGenBatchSize() {
  size_t numSequences = 0;
  for (auto& memoryFrameLine : memoryFrameLines_) {
    if (!memoryFrameLine.rootLayer) continue;
    Argument& bootArg = memoryFrameLine.rootLayer->getOutput();
807 808
    size_t batchSize = memoryFrameLine.is_sequence ? bootArg.getNumSequences()
                                                   : bootArg.getBatchSize();
Z
zhangjinchao01 已提交
809 810 811 812 813 814
    if (numSequences) {
      CHECK_EQ(numSequences, batchSize);
    } else {
      numSequences = batchSize;
    }
  }
815 816 817 818 819
  CHECK(numSequences)
      << "Fail to get batch size in generation. "
         "At least one of the Memory layer MUST have a layer that is NOT in "
         "the layer group to boot it, and this boot layer is used to "
         "decide batch_size in generation process.";
Z
zhangjinchao01 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
  return numSequences;
}

void RecurrentGradientMachine::generateSequence() {
  CHECK_NOTNULL(eosFrameLine_.get());
  CHECK_GE(outFrameLines_.size(), 1UL);
  size_t numSequences = getGenBatchSize();

  resizeBootFrame(numSequences);
  // We create only two sub-network in generation for alternate use.
  // Thus, we can reduce total memory of output_ in layer forward.
  resizeOrCreateFrames(2);

  // outFrameLines_.size() > 1UL
  dataArgsSize_ = outFrameLines_.size() - 1;
  dataArgs_.resize(dataArgsSize_);
  dataArgsFrame_.clear();
  dataArgsFrame_.resize(dataArgsSize_);

  // connect boot frame memory links
  std::vector<int> ids(numSequences);
841 842 843
  for (size_t i = 0; i < numSequences; ++i) {
    ids[i] = i;
  }
Z
zhangjinchao01 已提交
844 845 846 847 848 849 850 851 852 853 854
  for (auto& memoryFrameLine : memoryFrameLines_) {
    if (memoryFrameLine.rootAgent) {
      auto scatterAgent =
          dynamic_cast<ScatterAgentLayer*>(memoryFrameLine.rootAgent.get());
      bool seqFlag = memoryFrameLine.is_sequence;
      scatterAgent->setRealLayer(memoryFrameLine.rootLayer, ids, seqFlag);
      if (seqFlag) {
        CHECK(memoryFrameLine.rootLayer->getOutput().sequenceStartPositions)
            << "boot layer must be a sequence when is_sequence = true";
      }
    }
855 856
    NeuralNetwork::connect(
        memoryFrameLine.agents[0], memoryFrameLine.bootLayer, ids.size());
Z
zhangjinchao01 已提交
857 858 859 860 861 862 863 864 865 866
  }

  // boot layer forward
  AsyncGpuBlock asyncGpuBlock;
  for (auto& memoryFrameLine : memoryFrameLines_) {
    memoryFrameLine.bootLayer->forward(PASS_TEST);
  }

  // init outArg
  size_t resultNum = generator_.config.num_results_per_sample();
867 868
  IVector::resizeOrCreate(
      generator_.outArg.ids,
869 870
      generator_.config.max_num_frames() * numSequences * resultNum,
      false);
Z
zhangjinchao01 已提交
871 872
  if (resultNum > 1) {
    CHECK_LE(resultNum, static_cast<size_t>(generator_.config.beam_size()));
873 874 875 876 877
    Matrix::resizeOrCreate(generator_.outArg.in,
                           /* height */ numSequences,
                           /* width */ resultNum,
                           false,
                           /* useGpu */ false);
Z
zhangjinchao01 已提交
878 879
  }
  ICpuGpuVector::resizeOrCreate(generator_.outArg.sequenceStartPositions,
880 881
                                numSequences + 1,
                                /* useGpu */ false);
Z
zhangjinchao01 已提交
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
  if (getBeamSize() > 1) {
    beamSearch(numSequences);
  } else {
    oneWaySearch(numSequences);
  }
  if (dataArgsSize_) createDataOutlink(batchMachineIdVec_);

  size_t size = generator_.ids.size();
  generator_.outArg.ids->resize(size);
  generator_.outArg.ids->copyFrom(generator_.ids.data(), size);

  OutFrameLine& outFrameLine = outFrameLines_[0];
  auto dataAgent = dynamic_cast<DataLayer*>(outFrameLine.agentLayer.get());
  CHECK_NOTNULL(dataAgent);
  dataAgent->setData(generator_.outArg);
  dataAgent->prefetch();
}

void RecurrentGradientMachine::oneWaySearch(size_t batchSize) {
  OutFrameLine& outFrameLine = outFrameLines_[0];

  // finalPaths_[0] stores the generated results of the
  // entire batch, so its size exactly equals to batchSize.
  finalPaths_.clear();
  finalPaths_.resize(1);
  std::vector<Path>& finalPaths = finalPaths_[0];
  finalPaths.resize(batchSize);

  seqIds_.resize(batchSize);
  std::vector<int> scatterIds;
  for (size_t i = 0; i < batchSize; ++i) {
    finalPaths[i].seqId = i;
    seqIds_[i] = i;
  }

  // forward
  for (int i = 0; i < maxSequenceLength_; ++i) {
    if (i && scatterIds.empty()) break;
    int machineCur = i % 2;
    int machinePrev = (i - 1) % 2;
    // connect memory links
    if (i) {
      seqIds_.clear();
      for (size_t j = 0; j < batchSize; ++j) {
        if (finalPaths[j].seqId != -1) seqIds_.push_back(j);
      }

      for (auto& memoryFrameLine : memoryFrameLines_) {
        auto scatterAgent = dynamic_cast<ScatterAgentLayer*>(
            memoryFrameLine.scatterAgents[machineCur].get());
        scatterAgent->setRealLayer(memoryFrameLine.frames[machinePrev],
933 934
                                   scatterIds,
                                   memoryFrameLine.is_sequence);
Z
zhangjinchao01 已提交
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
        scatterAgent->forward(PASS_TEST);
        NeuralNetwork::connect(memoryFrameLine.agents[machineCur],
                               memoryFrameLine.scatterAgents[machineCur]);
      }
    }
    const std::vector<Argument> inArgs;
    std::vector<Argument> outArgs;
    frames_[machineCur]->forward(inArgs, &outArgs, PASS_TEST);

    const IVectorPtr& idVec = outFrameLine.frames[machineCur]->getOutput().ids;
    for (size_t j = 0; j < seqIds_.size(); ++j) {
      finalPaths[seqIds_[j]].ids.push_back(idVec->getElement(j));
      finalPaths[seqIds_[j]].machineIdVec.push_back(j);
    }

    copyDataOutlinkFrame(machineCur);

    // call value printer
    if (evaluator_) {
      evaluator_->eval(*(frames_[machineCur].get()));
    }
    // check eos
    const IVectorPtr& eosVec =
        eosFrameLine_->layers[machineCur]->getOutput().ids;
    scatterIds.clear();
    for (size_t j = 0; j < seqIds_.size(); ++j) {
      if (eosVec->getElement(j) == 1U) {
        // path.seqId = -1 indicates end of generation
        // of an input sequence
        finalPaths[seqIds_[j]].seqId = -1;
965 966 967
      } else {
        scatterIds.push_back(j);
      }
Z
zhangjinchao01 已提交
968 969 970 971 972 973 974 975
    }
  }

  batchMachineIdVec_.clear();
  int* starts = generator_.outArg.sequenceStartPositions->getMutableData(false);
  starts[0] = 0;
  generator_.ids.clear();
  for (size_t i = 0; i < batchSize; ++i) {
976 977
    generator_.ids.insert(generator_.ids.end(),
                          finalPaths[i].ids.begin(),
Z
zhangjinchao01 已提交
978 979 980
                          finalPaths[i].ids.end());
    starts[i + 1] = generator_.ids.size();
    batchMachineIdVec_.insert(batchMachineIdVec_.end(),
981 982
                              finalPaths[i].machineIdVec.begin(),
                              finalPaths[i].machineIdVec.end());
Z
zhangjinchao01 已提交
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
  }
}

void RecurrentGradientMachine::connectPrevFrame(int stepId,
                                                std::vector<Path>& paths) {
  int machineCur = stepId % 2;
  int machinePrev = (stepId - 1) % 2;
  int beam = getBeamSize();
  machineIds_.clear();
  topIds_.clear();
  seqIds_.clear();

  for (size_t j = 0; j < paths.size(); ++j) {
    machineIds_.push_back(paths[j].machineId);
    topIds_.push_back(paths[j].machineId * beam + paths[j].topIndex);
    seqIds_.push_back(paths[j].seqId);
  }

  for (auto& memoryFrameLine : memoryFrameLines_) {
    bool isOutIds = (memoryFrameLine.layerName == outFrameLines_[0].layerName);
    auto scatterAgent = dynamic_cast<ScatterAgentLayer*>(
        memoryFrameLine.scatterAgents[machineCur].get());
    scatterAgent->setRealLayer(memoryFrameLine.frames[machinePrev],
                               isOutIds ? topIds_ : machineIds_,
                               memoryFrameLine.is_sequence);
    scatterAgent->forward(PASS_TEST);
    NeuralNetwork::connect(memoryFrameLine.agents[machineCur],
                           memoryFrameLine.scatterAgents[machineCur]);
  }
}

void RecurrentGradientMachine::forwardFrame(int machineCur) {
  // forward
  const std::vector<Argument> inArgs;
  std::vector<Argument> outArgs;
  frames_[machineCur]->forward(inArgs, &outArgs, PASS_TEST);

  copyDataOutlinkFrame(machineCur);

  IVectorPtr& ids = outFrameLines_[0].frames[machineCur]->getOutput().ids;
  MatrixPtr in = outFrameLines_[0].frames[machineCur]->getOutput().in;
  IVectorPtr& eos = eosFrameLine_->layers[machineCur]->getOutput().ids;
  if (useGpu_) {
    IVector::resizeOrCreate(cpuId_, ids->getSize(), false /* useGpu */);
    cpuId_->copyFrom(*ids);
1028 1029 1030 1031 1032
    Matrix::resizeOrCreate(cpuProb_,
                           in->getHeight(),
                           in->getWidth(),
                           false /* trans */,
                           false /* useGpu */);
Z
zhangjinchao01 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
    cpuProb_->copyFrom(*in);
    IVector::resizeOrCreate(cpuEos_, eos->getSize(), false /* useGpu */);
    cpuEos_->copyFrom(*eos);
  } else {
    cpuId_ = ids;
    cpuProb_ = in;
    cpuEos_ = eos;
  }
}

1043 1044
void RecurrentGradientMachine::singlePathExpand(Path& curPath,
                                                size_t curPathId,
1045 1046
                                                std::vector<Path>& newPaths,
                                                size_t expandWidth) {
Z
zhangjinchao01 已提交
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
  int calc_id =
      gDiyProbStart ? gDiyProbStart(curPath.ids.size(), curPath.ids.data()) : 0;

  const int* idVec = cpuId_->getData();
  const real* probMat = cpuProb_->getData();
  const int* eosVec = cpuEos_->getData();

  for (size_t k = 0; k < expandWidth; k++) {
    int index = curPathId * expandWidth + k;
    int id = idVec[index];
    real prob = probMat[index];
    /*
     * Ordinarily, beam search greedily expands the most promising expandWidth
     * paths that currently are ALWAYS returned by MaxIdLayer.
     * In one condition, if user customizes the beam search procedure by
     * restricting the expansion within a user defined subset,
     * as a result, MaxIdLayer possibly COULD NOT return expandWidth
     * vaild expansions, and it will use -1 to indicate the end of valid
     * expansion candidates.
     */
    if (id == -1) break;

    real newLogProb = generator_.config.log_prob() ? std::log(prob) : prob;
1070 1071
    Path newPath(
        curPath, id, newLogProb, curPathId /*machineId*/, k /*topIndex*/);
Z
zhangjinchao01 已提交
1072 1073
    if (this->beamSearchCtrlCallbacks_) {
      if (beamSearchCtrlCallbacks_->stopDetermineCandidates(
1074 1075
              newPath.seqId, newPath.ids, newPath.probHistory))
        return;
Z
zhangjinchao01 已提交
1076 1077 1078 1079 1080 1081
    }
    // outFrameLines_.size() > 1UL
    if (dataArgsSize_) {
      newPath.machineIdVec = curPath.machineIdVec;
      newPath.machineIdVec.push_back(curPathId);
    }
1082 1083
    bool atEos =
        eosVec[index] == 1U || newPath.ids.size() >= (size_t)maxSequenceLength_;
Z
zhangjinchao01 已提交
1084 1085 1086 1087 1088 1089 1090
    // adjustNewPath
    newPath.adjustProb(calc_id, atEos);
    if (this->beamSearchCtrlCallbacks_) {
      this->beamSearchCtrlCallbacks_->normOrDropNode(
          newPath.seqId, newPath.ids, newPath.probHistory, &newPath.logProb);
    }
    if (!newPath.isDropable()) {
1091 1092
      atEos ? finalPaths_[curPath.seqId].push_back(newPath)
            : newPaths.push_back(newPath);
Z
zhangjinchao01 已提交
1093 1094 1095
    }
  }  // for expandWidth

1096 1097 1098
  if (gDiyProbStop) {
    gDiyProbStop(calc_id);
  }
Z
zhangjinchao01 已提交
1099 1100
}

1101 1102
void RecurrentGradientMachine::beamExpand(std::vector<Path>& paths,
                                          std::vector<Path>& newPaths) {
Z
zhangjinchao01 已提交
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
  size_t candidatePathCount = paths.size();
  // idVec.size() could be larger than candidatePathCount * beam,
  // so user can drop some node customly.
  CHECK_EQ(cpuId_->getSize() % candidatePathCount, 0UL);
  size_t expandWidth = cpuId_->getSize() / candidatePathCount;

  // iterate over each sequence
  size_t totalExpandCount = 0;
  int prevSeqId = -1;
  int curSeqId = 0;
  for (size_t j = 0; j <= candidatePathCount; j++) {
    // expansions of a single sequence are all processed
1115
    curSeqId = (j < candidatePathCount ? paths[j].seqId : curSeqId + 1);
Z
zhangjinchao01 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
    if (prevSeqId != -1 && curSeqId != prevSeqId) {
      totalExpandCount += beamShrink(newPaths, prevSeqId, totalExpandCount);
    }
    if (j == candidatePathCount) return;
    singlePathExpand(paths[j], j, newPaths, expandWidth);

    prevSeqId = paths[j].seqId;
  }  // for paths
}

// Drop extra nodes to beam size.
1127 1128 1129 1130 1131 1132 1133 1134
size_t RecurrentGradientMachine::beamShrink(std::vector<Path>& newPaths,
                                            size_t seqId,
                                            size_t totalExpandCount) {
  size_t minNewPathSize =
      std::min(getBeamSize(), newPaths.size() - totalExpandCount);
  if (!minNewPathSize) {
    return 0;
  }
Z
zhangjinchao01 已提交
1135 1136
  std::nth_element(newPaths.begin() + totalExpandCount,
                   newPaths.begin() + totalExpandCount + minNewPathSize,
1137 1138
                   newPaths.end(),
                   Path::greaterPath);
Z
zhangjinchao01 已提交
1139 1140
  newPaths.resize(totalExpandCount + minNewPathSize);

1141 1142 1143 1144 1145 1146
  real minPathLogProb =
      std::min_element(newPaths.end() - minNewPathSize, newPaths.end())
          ->logProb;
  real maxPathLogProb =
      std::max_element(newPaths.end() - minNewPathSize, newPaths.end())
          ->logProb;
Z
zhangjinchao01 已提交
1147 1148 1149

  // Remove the already formed paths that are relatively short
  finalPaths_[seqId].erase(
1150 1151
      std::remove_if(finalPaths_[seqId].begin(),
                     finalPaths_[seqId].end(),
1152
                     [&](Path& p) { return p.logProb < minPathLogProb; }),
Z
zhangjinchao01 已提交
1153 1154 1155 1156 1157 1158 1159 1160
      finalPaths_[seqId].end());
  for (auto p : finalPaths_[seqId]) {
    if (minFinalPathLogProb_[seqId] > p.logProb) {
      minFinalPathLogProb_[seqId] = p.logProb;
    }
  }

  if (finalPaths_[seqId].size() >= getBeamSize() &&
1161
      minFinalPathLogProb_[seqId] >= maxPathLogProb) {
Z
zhangjinchao01 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
    newPaths.resize(totalExpandCount);
    return 0;
  }
  return minNewPathSize;
}

void RecurrentGradientMachine::fillGenOutputs() {
  size_t numResults = generator_.config.num_results_per_sample();
  for (size_t i = 0; i < finalPaths_.size(); ++i) {
    size_t minFinalPathsSize = std::min(numResults, finalPaths_[i].size());
    std::partial_sort(finalPaths_[i].begin(),
                      finalPaths_[i].begin() + minFinalPathsSize,
1174 1175
                      finalPaths_[i].end(),
                      Path::greaterPath);
Z
zhangjinchao01 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
    finalPaths_[i].resize(minFinalPathsSize);
  }

  batchMachineIdVec_.clear();
  generator_.ids.clear();
  if (numResults > 1) {
    real* probs = generator_.outArg.in->getData();
    int* starts =
        generator_.outArg.sequenceStartPositions->getMutableData(false);
    starts[0] = 0;
    for (size_t i = 0; i < finalPaths_.size(); ++i) {
      for (size_t j = 0; j < finalPaths_[i].size(); ++j) {
        Path& path = finalPaths_[i][j];
        generator_.ids.push_back(path.ids.size());  // sequence size
1190 1191
        generator_.ids.insert(
            generator_.ids.end(), path.ids.begin(), path.ids.end());
Z
zhangjinchao01 已提交
1192 1193 1194 1195 1196 1197 1198
        generator_.ids.push_back(-1);  // end of sequence
        probs[i * numResults + j] = path.logProb;

        if (!j && dataArgsSize_) {
          // in beam search, here only reserved the top 1 generated result
          // for out_links that are not the generated word indices.
          batchMachineIdVec_.insert(batchMachineIdVec_.end(),
1199 1200
                                    path.machineIdVec.begin(),
                                    path.machineIdVec.end());
Z
zhangjinchao01 已提交
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
        }
      }
      starts[i + 1] = generator_.ids.size();
    }
  } else {
    for (size_t i = 0; i < finalPaths_.size(); ++i) {
      CHECK(!finalPaths_[i].empty());
      generator_.ids = finalPaths_[i][0].ids;
    }
  }
}

void RecurrentGradientMachine::copyDataOutlinkFrame(size_t machineCur) {
  for (size_t i = 0; i < dataArgsSize_; i++) {
    Argument outFrame;
    outFrame.resizeAndCopyFrom(
        outFrameLines_[i + 1].frames[machineCur]->getOutput(), useGpu_);
    dataArgsFrame_[i].emplace_back(outFrame);
  }
}

void RecurrentGradientMachine::createDataOutlink(
    std::vector<int>& machineIdVec) {
1224 1225
  size_t seqNum =
      getBeamSize() > 1UL ? finalPaths_.size() : finalPaths_[0].size();
Z
zhangjinchao01 已提交
1226 1227
  std::vector<int> starts(seqNum + 1, 0);
  for (size_t i = 0; i < seqNum; ++i) {
1228 1229
    size_t seqLen = getBeamSize() > 1UL ? finalPaths_[i][0].ids.size()
                                        : finalPaths_[0][i].ids.size();
Z
zhangjinchao01 已提交
1230 1231 1232 1233
    starts[i + 1] = starts[i] + seqLen;
  }

  for (size_t i = 0; i < dataArgsSize_; i++) {
1234 1235 1236 1237 1238 1239
    dataArgs_[i].concat(dataArgsFrame_[i],
                        machineIdVec,
                        starts,
                        useGpu_,
                        HPPL_STREAM_1,
                        PASS_TEST);
Z
zhangjinchao01 已提交
1240

1241 1242
    auto dataAgent =
        dynamic_cast<DataLayer*>(outFrameLines_[i + 1].agentLayer.get());
Z
zhangjinchao01 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
    CHECK_NOTNULL(dataAgent);
    dataAgent->setData(dataArgs_[i]);
  }
}

void RecurrentGradientMachine::beamSearch(size_t batchSize) {
  finalPaths_.clear();
  finalPaths_.resize(batchSize);
  seqIds_.resize(batchSize);
  minFinalPathLogProb_.clear();
  minFinalPathLogProb_.resize(batchSize, 0);

  std::vector<Path> paths;
  std::vector<Path> newPaths;
  for (size_t i = 0; i < batchSize; ++i) {
    paths.push_back(Path(i));
    if (this->beamSearchCtrlCallbacks_) {
      paths.back().recordHistory();
    }
  }

  // restart beam search
  stopBeamSearch_ = false;
  for (int i = 0; i < maxSequenceLength_; ++i) {
    int machineCur = i % 2;
    std::unique_ptr<
        ScopedCallbacks<const RecurrentGradientMachine::EachStepCallback&, int>>
        statisticsBlock;
    if (this->beamSearchStatistics_) {
      auto ptr =
          new ScopedCallbacks<const RecurrentGradientMachine::EachStepCallback&,
                              int>(beamSearchStatistics_->onEachStepStarted,
1275 1276
                                   beamSearchStatistics_->onEachStepStoped,
                                   i);
Z
zhangjinchao01 已提交
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
      statisticsBlock.reset(ptr);
    }
    if (stopBeamSearch_) break;

    if (i) connectPrevFrame(i, paths);

    if (this->beamSearchCtrlCallbacks_) {
      std::vector<std::vector<int>*> prefixes;
      prefixes.resize(paths.size());
      std::transform(
Y
Yu Yang 已提交
1287 1288 1289
          paths.begin(), paths.end(), prefixes.begin(), [](const Path& p) {
            return const_cast<std::vector<int>*>(&p.ids);
          });
Z
zhangjinchao01 已提交
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
      beamSearchCtrlCallbacks_->beamSearchCandidateAdjust(
          prefixes, frames_[machineCur].get(), i);
    }

    forwardFrame(machineCur);
    beamExpand(paths, newPaths);
    if (newPaths.empty()) break;

    paths = newPaths;
    newPaths.clear();
  }  // end for machineCur
  fillGenOutputs();
}

void RecurrentGradientMachine::Path::adjustProb(int calc_id, bool atEos) {
  if (gDiyProbMethod) {
    logProb = gDiyProbMethod(calc_id, ids.size(), ids.data(), logProb, atEos);
  }
}

}  // namespace paddle