heter_pipeline_trainer.cc 12.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#if defined(PADDLE_WITH_PSCORE)
16
#include "paddle/fluid/distributed/ps/service/heter_server.h"
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/trainer.h"
#include "paddle/fluid/framework/trainer_desc.pb.h"

namespace paddle {
namespace framework {

class Variable;

using MiniScope = std::unordered_map<int, Scope*>;
using MicroScope =
    std::unordered_map<int, std::shared_ptr<std::vector<Scope*>>>;
using TaskQueue =
    std::unordered_map<int, std::shared_ptr<::paddle::framework::BlockingQueue<
                                std::pair<std::string, int>>>>;

void HeterPipelineTrainer::ResetDataset(Dataset* dataset) {
35
#ifndef PADDLE_WITH_FLPS
36
  if (pipeline_stage_ == 0) {
37
#endif
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    SetDataset(dataset);
    const std::vector<paddle::framework::DataFeed*> readers =
        dataset->GetReaders();
    VLOG(3) << "readers num: " << readers.size();
    // change thread num is not supported
    PADDLE_ENFORCE_EQ(thread_num_, readers.size(),
                      platform::errors::InvalidArgument(
                          "change Dataset thread_num is not supported"));
    int cnt = -1;
    for (auto& worker_pair : workers_) {
      cnt++;
      auto device_worker = worker_pair.second;
      auto this_worker =
          std::dynamic_pointer_cast<paddle::framework::HeterSectionWorker>(
              device_worker);
      this_worker->SetDataFeed(readers[cnt]);
      this_worker->SetReaderPlace(place_);
    }
56
#ifndef PADDLE_WITH_FLPS
57
  }
58
#endif
59 60 61 62
}

void HeterPipelineTrainer::Initialize(const TrainerDesc& trainer_desc,
                                      Dataset* dataset) {
63
  trainer_desc_ = trainer_desc;
64 65 66 67 68 69 70
  thread_num_ = trainer_desc.thread_num();
  ParseDumpConfig(trainer_desc);
  SetDebug(trainer_desc.debug());
  const std::vector<paddle::framework::DataFeed*> readers =
      dataset->GetReaders();
  // change thread num to readers num
  thread_num_ = readers.size();
71
  VLOG(3) << "worker(readers) thread num: " << thread_num_;
72 73 74 75 76 77 78 79 80 81 82
  const auto& heter_section_params = trainer_desc.heter_section_param();
  num_pipeline_stages_ = heter_section_params.num_pipeline_stages();
  pipeline_stage_ = heter_section_params.pipeline_stage();
  num_microbatches_ = heter_section_params.num_microbatches();
  VLOG(3) << "Number of microbatches per minibatch: " << num_microbatches_;
  trainer_id_ = trainer_desc.trainer_id();
  for (int i = 0; i < num_pipeline_stages_; ++i) {
    auto trainer_num = trainer_desc.trainers(i);
    trainers_.push_back(trainer_num);
  }
  int cpu_trainer_num = trainers_[0];
83 84 85 86 87 88
  VLOG(4) << "trainer_id_: " << trainer_id_;
  VLOG(4) << "cpu_trainer_num: " << cpu_trainer_num
          << " xpu_trainer_num: " << trainers_[1];
#ifdef PADDLE_WITH_FLPS
  thread_num_ = 1;
#endif
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
  if (pipeline_stage_ == 0) {  // for cpu trainer
    int cnt = -1;
    int real_thread_id = trainer_id_;
    for (int i = 0; i < thread_num_; i++) {
      cnt++;
      workers_[real_thread_id] = DeviceWorkerFactory::CreateDeviceWorker(
          trainer_desc.device_worker_name());
      auto this_worker =
          std::dynamic_pointer_cast<paddle::framework::HeterSectionWorker>(
              workers_[real_thread_id]);
      this_worker->SetDebug(debug_);
      this_worker->SetNeedDumpField(need_dump_field_);
      this_worker->SetNeedDumpParam(need_dump_param_);
      this_worker->SetDumpFieldVector(dump_fields_);
      this_worker->SetDumpParamVector(dump_param_);
      this_worker->InitRandomDumpConfig(trainer_desc);
      this_worker->SetDeviceIndex(real_thread_id);
      real_thread_id += cpu_trainer_num;
      this_worker->SetDataFeed(readers[cnt]);
      this_worker->SetMicrobatchNum(num_microbatches_);
      this_worker->SetPipelineStageNum(num_pipeline_stages_);
      this_worker->SetPipelineStage(pipeline_stage_);
    }
112 113 114 115
  } else {
    // for heter_trainer
    // heter trainer with thread_id == -1 is not for real training, just for run
    // listen op
116
    workers_[-1] = DeviceWorkerFactory::CreateDeviceWorker(
117 118 119
        trainer_desc.device_worker_name());
    auto this_worker =
        std::dynamic_pointer_cast<paddle::framework::HeterSectionWorker>(
120
            workers_[-1]);
121 122 123 124 125 126 127 128 129 130
#ifdef PADDLE_WITH_FLPS
    this_worker->SetDebug(debug_);
    this_worker->SetNeedDumpField(need_dump_field_);
    this_worker->SetNeedDumpParam(need_dump_param_);
    this_worker->SetDumpFieldVector(dump_fields_);
    this_worker->SetDumpParamVector(dump_param_);
    this_worker->InitRandomDumpConfig(trainer_desc);
    this_worker->SetDataFeed(readers[0]);
#endif
    this_worker->SetDeviceIndex(-1);
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
    this_worker->SetMicrobatchNum(num_microbatches_);
    this_worker->SetPipelineStageNum(num_pipeline_stages_);
    this_worker->SetPipelineStage(pipeline_stage_);
  }
}

void HeterPipelineTrainer::InitOtherEnv(const ProgramDesc& main_program) {
  if (need_dump_field_) {
    InitDumpEnv();
  }
}

std::string HeterPipelineTrainer::GetDumpPath(int tid) {
  return string::format_string("%s/part-%05d", dump_fields_path_.c_str(), tid);
}

void HeterPipelineTrainer::InitDumpEnv() {
  queue_ = paddle::framework::MakeChannel<std::string>();
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->SetChannelWriter(queue_.get());
  }
  dump_thread_num_ = 1;
  for (int i = 0; i < dump_thread_num_; i++) {
    dump_thread_.push_back(
        std::thread(std::bind(&TrainerBase::DumpWork, this, i)));
  }
}

void HeterPipelineTrainer::InitTrainerEnv(const ProgramDesc& main_program,
                                          const platform::Place& place) {
  place_ = place;
  PADDLE_ENFORCE_NOT_NULL(root_scope_, platform::errors::InvalidArgument(
                                           "root_scope_ can not be nullptr"));
  // initialize mini_scopes & micro_scopes
  mini_scopes_.reset(new MiniScope{});
  micro_scopes_.reset(new MicroScope{});
  task_queue_.reset(new TaskQueue{});
  for (auto& worker_pair : workers_) {
    auto worker_index = worker_pair.first;
    auto device_worker = worker_pair.second;
171
    VLOG(0) << "workers index in InitTrainerEnv: " << worker_index;
172 173 174 175 176
    auto this_worker =
        std::dynamic_pointer_cast<paddle::framework::HeterSectionWorker>(
            device_worker);
    this_worker->SetPlace(place);
    this_worker->Initialize(trainer_desc_);
177 178 179
#ifdef PADDLE_WITH_FLPS
    this_worker->SetReaderPlace(place);
#else
180 181 182
    if (pipeline_stage_ == 0) {
      this_worker->SetReaderPlace(place);
    }
183
#endif
184 185 186 187 188 189 190 191
    this_worker->SetRootScope(root_scope_);
    // generate mini_batch scope for every worker
    auto* minibatch_scope = &root_scope_->NewScope();
    (*mini_scopes_)[worker_index] = minibatch_scope;
    this_worker->SetMinibatchScope(minibatch_scope);
    // after set micro num & mini batch scope
    this_worker->CreateMicrobatchScopes();
    (*micro_scopes_)[worker_index] = this_worker->GetMicrobatchScopes();
192
    VLOG(4) << "worker_index: " << worker_index;
193 194 195 196 197 198 199
    (*task_queue_)[worker_index] = this_worker->GetThreadQueue();
  }
}

void HeterPipelineTrainer::Run() {
  VLOG(3) << "Going to run HeterPipelineTrainer::Run()";
  if (listen_ptr_ == nullptr) {
200
    VLOG(3) << "listen_ptr_ is null";
201 202 203 204 205 206 207 208 209 210 211 212
    for (auto& worker_pair : workers_) {
      auto& device_worker = worker_pair.second;
      auto worker_0 =
          std::dynamic_pointer_cast<paddle::framework::HeterSectionWorker>(
              device_worker);
      listen_ptr_.reset(new std::thread(
          std::bind(&HeterSectionWorker::RunListen, worker_0.get())));
      break;
    }
  }
  auto heter_server = paddle::distributed::HeterServer::GetInstance();
  heter_server->WaitServerReady();
213
  heter_server->SetMiniBatchScopes(mini_scopes_);
214
  heter_server->SetMicroBatchScopes(micro_scopes_);
215
  VLOG(4) << "heter_server SetTaskQueue";
216
  heter_server->SetTaskQueue(task_queue_);
217

218
  // main training logic
219
  VLOG(3) << "pipeline_stage_ is " << pipeline_stage_;
220 221
  if (pipeline_stage_ == 0) {  // for cpu trainer
    for (auto& worker_pair : workers_) {
222
      VLOG(4) << "cpu worker index : " << worker_pair.first;
223 224 225 226 227 228 229 230 231 232
      auto device_worker = worker_pair.second;
      if (!debug_) {
        threads_.push_back(
            std::thread(&DeviceWorker::TrainFiles, device_worker.get()));
      } else {
        threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
                                       device_worker.get()));
      }
    }
  } else {  // for heter worker
233
    // start thread_worker with thread_id = -1
234
    for (auto& worker_pair : workers_) {
235
      VLOG(4) << "xpu worker index : " << worker_pair.first;
236 237 238 239 240 241 242 243 244
      auto device_worker = worker_pair.second;
      if (!debug_) {
        threads_.push_back(
            std::thread(&DeviceWorker::TrainFiles, device_worker.get()));
      } else {
        threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
                                       device_worker.get()));
      }
    }
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
    bool epoch_finish = false;
    auto heter_server = paddle::distributed::HeterServer::GetInstance();
    while (!epoch_finish) {
      if (heter_server->IsStop()) {
        epoch_finish = true;
        continue;
      }
      // create new thread_worker
      // size_t thread_num = (*micro_scopes_).size();
      // size_t thread_num = (*task_queue_).size();
      size_t thread_num = heter_server->GetThreadNum();
      while (thread_num > threads_.size()) {
        for (auto& worker_pair : (*micro_scopes_)) {
          auto worker_index = worker_pair.first;
          if (workers_.find(worker_index) != workers_.end()) continue;
          workers_[worker_index] = DeviceWorkerFactory::CreateDeviceWorker(
              trainer_desc_.device_worker_name());
          auto this_worker =
              std::dynamic_pointer_cast<paddle::framework::HeterSectionWorker>(
                  workers_[worker_index]);
          this_worker->SetDebug(debug_);
          this_worker->SetNeedDumpField(need_dump_field_);
          this_worker->SetNeedDumpParam(need_dump_param_);
          this_worker->SetDumpFieldVector(dump_fields_);
          this_worker->SetDumpParamVector(dump_param_);
          this_worker->InitRandomDumpConfig(trainer_desc_);
          this_worker->SetDeviceIndex(worker_index);
          this_worker->SetMicrobatchNum(num_microbatches_);
          this_worker->SetPipelineStageNum(num_pipeline_stages_);
          this_worker->SetPipelineStage(pipeline_stage_);
          this_worker->SetPlace(place_);
276 277 278 279
#ifdef PADDLE_WITH_FLPS
          this_worker->SetDataFeed(workers_[-1]->device_reader_);
          this_worker->SetReaderPlace(place_);
#endif
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
          this_worker->Initialize(trainer_desc_);
          this_worker->SetRootScope(root_scope_);

          // generate mini_batch scope for every worker
          // auto* minibatch_scope = &root_scope_->NewScope();
          auto* minibatch_scope = (*mini_scopes_)[worker_index];
          // (*mini_scopes_)[worker_index] = minibatch_scope;
          this_worker->SetMinibatchScope(minibatch_scope);
          // after set micro num & mini batch scope
          this_worker->SetMicrobatchScopes((*micro_scopes_)[worker_index]);
          this_worker->CreateMicrobatchScopes();
          // this_worker->SetMicrobatchScopes((*micro_scopes_)[worker_index]);
          this_worker->SetThreadQueue((*task_queue_)[worker_index]);
          if (!debug_) {
            threads_.push_back(
                std::thread(&DeviceWorker::TrainFiles, this_worker.get()));
          } else {
            threads_.push_back(std::thread(
                &DeviceWorker::TrainFilesWithProfiler, this_worker.get()));
          }
        }
      }
    }
303 304 305 306 307 308 309
  }
  for (auto& th : threads_) {
    th.join();
  }
  if (threads_.size() > 0) {
    threads_.clear();
  }
310
  VLOG(3) << "Epoch Training done";
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
}

void HeterPipelineTrainer::Finalize() {
  VLOG(3) << "HeterPipelineTrainer Finalize";
  auto heter_server = paddle::distributed::HeterServer::GetInstance();
  heter_server->Stop();
  if (listen_ptr_) {
    (listen_ptr_.get())->join();
    listen_ptr_.reset(nullptr);
  }
  if (need_dump_field_) {
    FinalizeDumpEnv();
  }
  root_scope_->DropKids();
}

Scope* HeterPipelineTrainer::GetWorkerScope(int thread_id) {
328 329 330 331 332
  if (workers_.find(thread_id) != workers_.end()) {
    return workers_[thread_id]->GetThreadScope();
  } else {
    return nullptr;
  }
333 334 335
}

}  // end namespace framework
Z
ziyoujiyi 已提交
336
}  // end namespace paddle
337
#endif