transpose_op.cc 15.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
xzl 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
xzl 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
xzl 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
xzl 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/transpose_op.h"
16

17
#include <memory>
18
#include <string>
19
#include <vector>
X
xzl 已提交
20

21 22 23 24
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

X
xzl 已提交
25 26 27 28 29 30 31 32 33
namespace paddle {
namespace operators {

using framework::Tensor;

class TransposeOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

34
  void InferShape(framework::InferShapeContext *ctx) const override {
35 36
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Transpose");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Transpose");
Q
Qiao Longfei 已提交
37 38
    auto x_dims = ctx->GetInputDim("X");
    std::vector<int> axis = ctx->Attrs().Get<std::vector<int>>("axis");
X
xzl 已提交
39
    size_t x_rank = x_dims.size();
X
xzl 已提交
40
    size_t axis_size = axis.size();
X
xzl 已提交
41

42 43
    PADDLE_ENFORCE_EQ(x_rank,
                      axis_size,
44 45 46 47 48
                      platform::errors::InvalidArgument(
                          "The input tensor's dimension "
                          "should be equal to the axis's size. "
                          "But received input tensor's dimension is %d, "
                          "axis's size is %d",
49 50
                          x_rank,
                          axis_size));
51 52 53

    std::vector<int> count(axis_size, 0);
    for (size_t i = 0; i < axis_size; i++) {
54 55
      PADDLE_ENFORCE_GE(axis[i],
                        0,
56 57 58
                        platform::errors::InvalidArgument(
                            "The axis should be greater than or equal to 0."
                            "But received %d of axis[%d]",
59 60
                            axis[i],
                            i));
61

62
      PADDLE_ENFORCE_EQ(
63 64
          axis[i] < static_cast<int>(axis_size) && ++count[axis[i]] == 1,
          true,
65 66 67 68 69 70 71
          platform::errors::InvalidArgument(
              "Each element of Attribute axis should "
              "be a unique value range from 0 to (dims - 1), "
              "where the dims is the axis's size, "
              "unique value means this axis value can appear only once. "
              "But received axis[%d] is %d, axis_size is %d, "
              "count[axis[%d]] is %d",
72 73 74 75 76
              i,
              axis[i],
              axis_size,
              i,
              count[axis[i]]));
X
xzl 已提交
77
    }
X
xzl 已提交
78

X
xzl 已提交
79
    framework::DDim out_dims(x_dims);
J
Jacek Czaja 已提交
80 81 82
#ifdef PADDLE_WITH_MKLDNN
    // Here we need to match dims to paddle layout
    // as we are producing non-oneDNN result
83
    if (ctx->IsRunMKLDNNKernel() && (x_dims.size() >= 3) &&
J
Jacek Czaja 已提交
84 85
        (paddle::platform::MKLDNNDeviceContext::tls()
             .get_cur_paddle_data_layout() == framework::DataLayout::kNHWC)) {
86
      auto dims = phi::vectorize<int>(x_dims);
J
Jacek Czaja 已提交
87 88 89 90 91 92
      std::rotate(dims.begin() + 1, dims.begin() + 2, dims.end());
      x_dims = x_dims.reshape(dims);
      VLOG(3)
          << "Rotating Shape in Transpose from: kMKLDNN to: kNHWC output_shape";
    }
#endif
93
    for (size_t i = 0; i < axis_size; i++) {
X
xzl 已提交
94
      out_dims[i] = x_dims[axis[i]];
X
xzl 已提交
95
    }
Q
Qiao Longfei 已提交
96
    ctx->SetOutputDim("Out", out_dims);
X
xzl 已提交
97
  }
98 99 100 101

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
102
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
103
#ifdef PADDLE_WITH_MKLDNN
J
jiahongyu 已提交
104 105 106 107 108
    if (this->CanMKLDNNBeUsed(ctx, data_type)) {
      return framework::OpKernelType(data_type,
                                     ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
109 110
    }
#endif
J
jiahongyu 已提交
111 112 113
    auto &data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout_);
114
  }
X
xzl 已提交
115 116 117 118
};

class TransposeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
119
  void Make() override {
120
    AddInput(
X
xzl 已提交
121
        "X",
122 123
        "(Tensor) The input tensor, tensors with rank up to 6 are supported.");
    AddOutput("Out", "(Tensor)The output tensor.");
X
xzl 已提交
124 125
    AddAttr<std::vector<int>>(
        "axis",
126 127 128
        "(vector<int>) A list of values, and the size of the list should be "
        "the same with the input tensor rank. This operator permutes the input "
        "tensor's axes according to the values given.");
129 130
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
131 132
        .SetDefault(false)
        .AsExtra();
133 134 135 136 137 138
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
139 140
        .SetDefault("AnyLayout")
        .AsExtra();
141 142 143 144
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
145 146
        .SetDefault(false)
        .AsExtra();
147 148 149 150
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
151 152
        .InEnum({"float32", "int8", "bfloat16"})
        .AsExtra();
153
    /* int8 parameters */
X
xzl 已提交
154
    AddComment(R"DOC(
155 156
Transpose Operator.

157 158
The input tensor will be permuted according to the axes given.
The behavior of this operator is similar to how `numpy.transpose` works.
Y
ying 已提交
159

160 161 162 163 164 165
- suppose the input `X` is a 2-D tensor:
    $$
    X = \begin{pmatrix}
    0 &1 &2 \\
    3 &4 &5
    \end{pmatrix}$$
W
wanghaoshuang 已提交
166

167
    the given `axes` is: $[1, 0]$, and $Y$ = transpose($X$, axis)
W
wanghaoshuang 已提交
168

169
    then the output $Y$ is:
W
wanghaoshuang 已提交
170

171 172 173 174 175 176
    $$
    Y = \begin{pmatrix}
         0 &3 \\
         1 &4  \\
         2 &5
    \end{pmatrix}$$
W
wanghaoshuang 已提交
177

178
- Given a input tensor with shape $(N, C, H, W)$ and the `axes` is
179
$[0, 2, 3, 1]$, then shape of the output tensor will be: $(N, H, W, C)$.
180

X
xzl 已提交
181 182 183 184 185 186 187 188
)DOC");
  }
};

class TransposeOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

189
  void InferShape(framework::InferShapeContext *ctx) const override {
190
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "TransposeOpGrad");
191 192 193 194
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
                   "Input",
                   framework::GradVarName("Out"),
                   "TransposeOpGrad");
Q
Qiao Longfei 已提交
195 196 197 198 199
    auto x_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    }
X
xzl 已提交
200
  }
201 202 203 204

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
205 206
    auto data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
207
#ifdef PADDLE_WITH_MKLDNN
J
jiahongyu 已提交
208 209 210 211 212
    if (this->CanMKLDNNBeUsed(ctx, data_type)) {
      return framework::OpKernelType(data_type,
                                     ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
213 214
    }
#endif
J
jiahongyu 已提交
215 216 217
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout_);
218
  }
X
xzl 已提交
219 220
};

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
// FIXME(zcd): transpose2 adds an intermediate output(XShape) based on
// transpose, the XShape is used to carry the shape and lod of X which
// will be used in transpose_grad, in this way, the framework can reuse
// the memory of X immediately the transpose2_op is finished.
// Considering compatibility issues, we could not fix transpose2_op
class Transpose2Op : public TransposeOp {
 public:
  Transpose2Op(const std::string &type,
               const framework::VariableNameMap &inputs,
               const framework::VariableNameMap &outputs,
               const framework::AttributeMap &attrs)
      : TransposeOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    TransposeOp::InferShape(ctx);
236
    if (!ctx->HasOutput("XShape")) return;
237 238 239 240 241 242
    const auto &in_dims = ctx->GetInputDim("X");
    std::vector<int64_t> x_shape_dim(in_dims.size() + 1);
    x_shape_dim[0] = 0;
    for (int i = 0; i < in_dims.size(); ++i) {
      x_shape_dim[i + 1] = in_dims[i];
    }
243
    ctx->SetOutputDim("XShape", phi::make_ddim(x_shape_dim));
244 245 246 247 248 249
    ctx->ShareLoD("X", /*->*/ "XShape");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
250 251
    framework::proto::VarType::Type data_type =
        OperatorWithKernel::IndicateVarDataType(ctx, "X");
252
#ifdef PADDLE_WITH_MKLDNN
J
jiahongyu 已提交
253
    if (this->CanMKLDNNBeUsed(ctx, data_type)) {
254
      using framework::proto::VarType;
255 256
      auto input_data_type =
          framework::TransToProtoVarType(ctx.Input<Tensor>("X")->dtype());
J
jiahongyu 已提交
257 258 259 260 261 262 263 264 265
      int customized_type_value = (input_data_type == VarType::INT8 ||
                                   input_data_type == VarType::UINT8)
                                      ? kTransposeMKLDNNINT8
                                      : kTransposeMKLDNNFP32;
      return framework::OpKernelType(data_type,
                                     ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN,
                                     customized_type_value);
266 267
    }
#endif
J
jiahongyu 已提交
268 269 270
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout_);
271 272 273
  }
};

274
class Transpose2OpMaker : public framework::OpProtoAndCheckerMaker {
275 276
 public:
  void Make() override {
277 278 279 280 281 282 283 284 285
    AddInput(
        "X",
        "(Tensor) The input tensor, tensors with rank up to 6 are supported.");
    AddOutput("Out", "(Tensor)The output tensor.");
    AddAttr<std::vector<int>>(
        "axis",
        "(vector<int>) A list of values, and the size of the list should be "
        "the same with the input tensor rank. This operator permutes the input "
        "tensor's axes according to the values given.");
286 287 288
    AddOutput("XShape", "(Tensor)The output tensor.")
        .AsIntermediate()
        .AsExtra();
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    AddComment(R"DOC(
Transpose Operator.

The input tensor will be permuted according to the axes given.
The behavior of this operator is similar to how `numpy.transpose` works.

- suppose the input `X` is a 2-D tensor:
    $$
    X = \begin{pmatrix}
    0 &1 &2 \\
    3 &4 &5
    \end{pmatrix}$$

    the given `axes` is: $[1, 0]$, and $Y$ = transpose($X$, axis)

    then the output $Y$ is:

    $$
    Y = \begin{pmatrix}
         0 &3 \\
         1 &4  \\
         2 &5
    \end{pmatrix}$$

- Given a input tensor with shape $(N, C, H, W)$ and the `axes` is
$[0, 2, 3, 1]$, then shape of the output tensor will be: $(N, H, W, C)$.

)DOC");
317 318 319
  }
};

H
hong 已提交
320 321
template <typename T>
class Transpose2GradMaker : public framework::SingleGradOpMaker<T> {
322
 public:
H
hong 已提交
323
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
324

325
  void Apply(GradOpPtr<T> grad_op) const override {
326
    grad_op->SetType("transpose2_grad");
H
hong 已提交
327 328 329 330
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
331 332 333
  }
};

334 335 336 337 338 339 340 341 342 343 344 345 346 347
template <typename T>
class Transpose2DoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("transpose2");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetOutput("XShape", this->Input("XShape"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

348 349 350 351 352
class Transpose2OpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
353 354 355 356 357
    OP_INOUT_CHECK(
        ctx->HasInput("XShape"), "Input", "XShape", "Transpose2OpGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
                   "Input",
                   framework::GradVarName("Out"),
358
                   "Transpose2OpGrad");
359 360
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      auto xshape_dim = ctx->GetInputDim("XShape");
361
      auto x_shape_dim = phi::slice_ddim(xshape_dim, 1, xshape_dim.size());
362 363 364 365 366 367 368 369
      ctx->SetOutputDim(framework::GradVarName("X"), x_shape_dim);
      ctx->ShareLoD("XShape", framework::GradVarName("X"));
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
370 371 372
    framework::proto::VarType::Type data_type =
        OperatorWithKernel::IndicateVarDataType(ctx,
                                                framework::GradVarName("Out"));
373
#ifdef PADDLE_WITH_MKLDNN
J
jiahongyu 已提交
374 375 376 377 378
    if (this->CanMKLDNNBeUsed(ctx, data_type)) {
      return framework::OpKernelType(data_type,
                                     ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
379 380
    }
#endif
J
jiahongyu 已提交
381 382 383
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
    return framework::OpKernelType(data_type, ctx.GetPlace(), layout_);
384 385 386
  }
};

H
hong 已提交
387 388 389 390 391 392 393 394
class TransposeGradInferVarType : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    ctx->SyncTypeAndDataType(framework::GradVarName("Out"),
                             framework::GradVarName("X"));
  }
};

X
xzl 已提交
395 396 397 398
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
399
REGISTER_OPERATOR(
400 401 402
    transpose,
    ops::TransposeOp,
    ops::TransposeOpMaker,
H
hong 已提交
403 404
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
405 406
REGISTER_OPERATOR(transpose_grad,
                  ops::TransposeOpGrad,
H
hong 已提交
407
                  ops::TransposeGradInferVarType);
408

409 410 411
REGISTER_OPERATOR(transpose2,
                  ops::Transpose2Op,
                  ops::Transpose2OpMaker,
H
hong 已提交
412 413
                  ops::Transpose2GradMaker<paddle::framework::OpDesc>,
                  ops::Transpose2GradMaker<paddle::imperative::OpBase>);
414 415
REGISTER_OPERATOR(transpose2_grad,
                  ops::Transpose2OpGrad,
H
hong 已提交
416
                  ops::TransposeGradInferVarType,
417 418
                  ops::Transpose2DoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Transpose2DoubleGradMaker<paddle::imperative::OpBase>);