lookup_table_op.h 6.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16

#pragma once

17 18 19
#include <string>
#include <vector>

Y
Yi Wang 已提交
20 21 22 23
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
24 25 26 27

namespace paddle {
namespace operators {

C
chengduoZH 已提交
28
using Tensor = framework::Tensor;
F
fengjiayi 已提交
29
using LoDTensor = framework::LoDTensor;
30
using SelectedRows = framework::SelectedRows;
31 32
using DDim = framework::DDim;

Q
qiaolongfei 已提交
33
constexpr int64_t kNoPadding = -1;
34 35

template <typename T>
Y
Yu Yang 已提交
36
class LookupTableKernel : public framework::OpKernel<T> {
37
 public:
38 39 40 41 42 43 44 45 46 47 48 49 50 51
  void Compute(const framework::ExecutionContext &context) const override {
    auto *table_var = context.InputVar("W");
    auto *ids_var = context.InputVar("Ids");
    Tensor *output_t = context.Output<Tensor>("Out");
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");

    DDim table_dim;

    if (table_var->IsType<LoDTensor>()) {
      table_dim = context.Input<LoDTensor>("W")->dims();
    } else if (table_var->IsType<SelectedRows>()) {
      auto *table_t = context.Input<SelectedRows>("W");
      table_dim = table_t->value().dims();
    } else {
Q
qiaolongfei 已提交
52 53 54
      PADDLE_THROW(
          "The parameter W of a LookupTable "
          "must be either LoDTensor or SelectedRows");
55
    }
C
chengduoZH 已提交
56

57
    int64_t *ids;
C
chengduoZH 已提交
58
    int64_t ids_numel;
59

C
chengduoZH 已提交
60 61 62 63
    // The type of Ids(Input) is SelectedRows or LoDTensor, when Ids's type
    // is LoDTensor, this tensor contains the ids to be looked up in W;
    // when Ids's type is SelectedRows, the rows of Ids contains the
    // ids to be looked up in W.
C
chengduoZH 已提交
64
    if (ids_var->IsType<LoDTensor>()) {
65 66
      auto *ids_t = context.Input<LoDTensor>("Ids");
      ids = const_cast<int64_t *>(ids_t->data<int64_t>());
C
chengduoZH 已提交
67 68
      ids_numel = ids_t->numel();
    } else if (ids_var->IsType<SelectedRows>()) {
69 70
      auto *ids_t = context.Input<SelectedRows>("Ids");
      ids = const_cast<int64_t *>(ids_t->rows().data());
C
chengduoZH 已提交
71
      ids_numel = ids_t->rows().size();
72
      output_t->Resize({ids_numel, table_dim[1]});
C
chengduoZH 已提交
73 74 75 76
    } else {
      PADDLE_THROW("Unsupported Variable Type of Ids");
    }

77 78 79 80
    if (table_var->IsType<LoDTensor>()) {
      auto *table_t = context.Input<LoDTensor>("W");
      int64_t row_number = table_t->dims()[0];
      int64_t row_width = table_t->dims()[1];
81

82 83
      auto *table = table_t->data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());
84

C
chengduoZH 已提交
85
      for (int64_t i = 0; i < ids_numel; ++i) {
86 87 88 89 90 91 92 93
        if (padding_idx != kNoPadding && ids[i] == padding_idx) {
          memset(output + i * row_width, 0, row_width * sizeof(T));
        } else {
          PADDLE_ENFORCE_LT(ids[i], row_number);
          PADDLE_ENFORCE_GE(ids[i], 0);
          memcpy(output + i * row_width, table + ids[i] * row_width,
                 row_width * sizeof(T));
        }
94
      }
95 96 97 98 99 100
    } else if (table_var->IsType<SelectedRows>()) {
      const auto &table_t = table_var->Get<SelectedRows>();
      int64_t row_width = table_t.value().dims()[1];
      const auto *table = table_t.value().data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());

C
chengduoZH 已提交
101
      for (int64_t i = 0; i < ids_numel; ++i) {
102 103
        if (padding_idx != kNoPadding && ids[i] == padding_idx) {
          memset(output + i * row_width, 0, row_width * sizeof(T));
104 105
        } else {
          PADDLE_ENFORCE_GE(ids[i], 0);
Q
qiaolongfei 已提交
106
          auto id_index = table_t.index(ids[i]);
107 108
          memcpy(output + i * row_width, table + id_index * row_width,
                 row_width * sizeof(T));
109 110
        }
      }
111 112 113 114 115
    }
  }
};

template <typename T>
Y
Yu Yang 已提交
116
class LookupTableGradKernel : public framework::OpKernel<T> {
117
 public:
118
  void Compute(const framework::ExecutionContext &context) const override {
Q
qiaolongfei 已提交
119 120 121 122 123 124 125 126
    auto *table_var = context.InputVar("W");
    DDim table_dim;
    if (table_var->IsType<LoDTensor>()) {
      table_dim = context.Input<LoDTensor>("W")->dims();
    } else if (table_var->IsType<SelectedRows>()) {
      auto *table_t = context.Input<SelectedRows>("W");
      table_dim = table_t->value().dims();
    } else {
Q
qiaolongfei 已提交
127 128 129
      PADDLE_THROW(
          "The parameter W of a LookupTable "
          "must be either LoDTensor or SelectedRows");
Q
qiaolongfei 已提交
130 131
    }

132
    bool is_sparse = context.Attr<bool>("is_sparse");
133 134
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
135
    if (is_sparse) {
136 137 138
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
139

140
      auto *ids_data = ids->data<int64_t>();
141
      auto ids_dim = ids->dims();
142

143 144 145 146 147 148
      framework::Vector<int64_t> new_rows;
      new_rows.reserve(ids_dim[0]);
      for (int64_t i = 0; i < ids_dim[0]; i++) {
        new_rows.push_back(ids_data[i]);
      }
      d_table->set_rows(new_rows);
149

150
      auto *d_table_value = d_table->mutable_value();
Q
qiaolongfei 已提交
151
      d_table_value->Resize({ids_dim[0], table_dim[1]});
152 153
      d_table_value->mutable_data<T>(context.GetPlace());

Q
qiaolongfei 已提交
154
      d_table->set_height(table_dim[0]);
155

156 157
      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table_value->data<T>();
158 159 160 161

      PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output->dims());
      memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());
    } else {
162 163 164
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<LoDTensor>(framework::GradVarName("W"));
165

166
      auto *ids_data = ids->data<int64_t>();
167 168
      auto ids_dim = ids->dims();

Q
qiaolongfei 已提交
169
      int N = table_dim[0];
170 171
      int D = d_output->dims()[1];

172 173
      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table->mutable_data<T>(context.GetPlace());
174

175 176
      memset(d_table_data, 0, d_table->numel() * sizeof(T));

177 178 179 180
      for (int64_t i = 0; i < ids->numel(); ++i) {
        PADDLE_ENFORCE_LT(ids_data[i], N);
        PADDLE_ENFORCE_GE(ids_data[i], 0);
        for (int j = 0; j < D; ++j) {
181
          d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j];
182
        }
183 184 185 186 187 188 189
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle