fc_op.cc 13.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

W
wanghuancoder 已提交
17 18 19
namespace paddle {
namespace framework {
class Scope;
20

W
wanghuancoder 已提交
21 22 23 24 25 26
namespace proto {
class OpDesc;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

27 28 29 30 31 32 33 34 35
namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * FC converter convert a MUL op in Fluid to a FC layer in TRT.
 */
class FcOpConverter : public OpConverter {
 public:
36
  nvinfer1::ILayer* reshape_before_fc(nvinfer1::ITensor* before_fc,
W
Wangzheee 已提交
37 38
                                      nvinfer1::Dims x_dim, int x_num_col_dims,
                                      std::string output_name) {
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    // add shuffle before fc
    nvinfer1::Dims reshape_before_fc_dim;
    reshape_before_fc_dim.nbDims = x_num_col_dims + 3;
    // padding shape "* x q x 1 x 1"
    for (int i = 0; i < reshape_before_fc_dim.nbDims; i++) {
      reshape_before_fc_dim.d[i] = 1;
    }
    for (int i = 0; i < x_dim.nbDims; i++) {
      if (i < x_num_col_dims) {
        reshape_before_fc_dim.d[i] = 0;
      } else {
        if (x_dim.d[i] < 0) {
          reshape_before_fc_dim.d[x_num_col_dims] = -1;
          break;
        }
        reshape_before_fc_dim.d[x_num_col_dims] *= x_dim.d[i];
      }
    }
    auto* reshape_before_fc_layer =
        TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *before_fc);
    reshape_before_fc_layer->setReshapeDimensions(reshape_before_fc_dim);
W
Wangzheee 已提交
60 61 62
    reshape_before_fc_layer->setName(
        ("fc_op_reshape_before_fc: Shuffle (Output: " + output_name + ")")
            .c_str());
63 64 65 66 67 68 69
    return reshape_before_fc_layer;
  }

  nvinfer1::ILayer* reshape_after_fc(nvinfer1::ITensor* after_fc,
                                     nvinfer1::Dims x_dim, int x_num_col_dims) {
    // add shuffle after fc
    nvinfer1::Dims reshape_after_fc_dim;
70
    reshape_after_fc_dim.nbDims = x_num_col_dims + 1;
71 72 73 74 75 76 77 78 79
    for (int i = 0; i < reshape_after_fc_dim.nbDims; i++) {
      reshape_after_fc_dim.d[i] = 0;
    }
    auto* reshape_after_fc_layer =
        TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *after_fc);
    reshape_after_fc_layer->setReshapeDimensions(reshape_after_fc_dim);
    return reshape_after_fc_layer;
  }

80
  void operator()(const framework::proto::OpDesc& op,
81
                  const framework::Scope& scope, bool test_mode) override {
82
    VLOG(3) << "convert a fluid fc op to tensorrt fc layer without bias";
Y
Yan Chunwei 已提交
83
    framework::OpDesc op_desc(op, nullptr);
84
    auto output_name = op_desc.Output("Out").front();
85 86 87 88 89 90 91 92
    auto input_names = op_desc.InputNames();
    bool with_bias = input_names.size() >= 3;
    std::string w_name = "Y";
    std::string i_name = "X";
    if (with_bias) {
      w_name = "W";
      i_name = "Input";
    }
93
    // Declare inputs
94
    auto* X = engine_->GetITensor(op_desc.Input(i_name).front());
W
Wangzheee 已提交
95
    auto x_dim = X->getDimensions();
96
    // Declare weights
97
    auto* Y_v = scope.FindVar(op_desc.Input(w_name).front());
98 99 100
    PADDLE_ENFORCE_NOT_NULL(
        Y_v, platform::errors::NotFound(
                 "Can not find %s presistale var of fc in scope.", w_name));
101
    auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
102
    int x_num_col_dims =
P
Pei Yang 已提交
103
        op_desc.HasAttr("x_num_col_dims")
104
            ? BOOST_GET_CONST(int, op_desc.GetAttr("x_num_col_dims"))
P
Pei Yang 已提交
105
            : (op_desc.HasAttr("in_num_col_dims")
106
                   ? BOOST_GET_CONST(int, op_desc.GetAttr("in_num_col_dims"))
P
Pei Yang 已提交
107 108 109
                   : 1);
    const std::string activation_type =
        op_desc.HasAttr("activation_type")
110
            ? BOOST_GET_CONST(std::string, op_desc.GetAttr("activation_type"))
P
Pei Yang 已提交
111
            : "";
112
    // This may trigger a GPU->CPU copy, because TRT's weight can only be
113
    // assigned from CPU memory, which can't be avoided.
114
    float* weight_data = nullptr;
115
    bool enable_int8 = op_desc.HasAttr("enable_int8");
116
    float in_scale = 0.;
117 118
    if (enable_int8) {
#if IS_TRT_VERSION_GE(5000)
119
      CHECK(op_desc.HasAttr(i_name + "_scale"));
120
      in_scale =
121
          BOOST_GET_CONST(float, op_desc.GetAttr(i_name + "_scale")) * 127;
122
      auto weight_scale =
123
          BOOST_GET_CONST(std::vector<float>, op_desc.GetAttr("weight_scale"));
124 125 126 127 128 129 130 131
      weight_data = engine_->GetWeightCPUData(op_desc.Input(w_name).front(),
                                              Y_t, true, weight_scale);
      engine_->SetTensorDynamicRange(X, in_scale);
#endif
    } else {
      weight_data =
          engine_->GetWeightCPUData(op_desc.Input(w_name).front(), Y_t, false);
    }
N
nhzlx 已提交
132

133 134 135 136 137
    PADDLE_ENFORCE_EQ(Y_t->dims().size(), 2UL,
                      platform::errors::InvalidArgument(
                          "The fc's weight should be a matrix with 2 dims, but "
                          "it's %d-dimensional.",
                          Y_t->dims().size()));  // a matrix
138 139 140 141 142 143 144 145 146 147 148 149 150
    int m = Y_t->dims()[0];
    int n = Y_t->dims()[1];
    auto tranpose_weight = [](const float* src, float* dst, int m, int n) {
      for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
          dst[j * m + i] = src[i * n + j];
        }
      }
    };

    auto regist_fc = [&](nvinfer1::ITensor* inputs, int n_output,
                         TensorRTEngine::Weight& weight,
                         TensorRTEngine::Weight& bias) {
151
      if (enable_int8) {
152
        // add conv layer
153 154 155 156 157 158 159
        PADDLE_ENFORCE_EQ(
            op_desc.HasAttr("out_threshold"), true,
            platform::errors::InvalidArgument(
                "must have out threshold in fc layers in int8 mode"));
        float out_scale =
            BOOST_GET_CONST(float, op_desc.GetAttr("out_threshold"));
        nvinfer1::DimsHW nv_ksize(1, 1);
160 161 162
        auto* fc_layer_int8 =
            TRT_ENGINE_ADD_LAYER(engine_, Convolution, *inputs, n_output,
                                 nv_ksize, weight.get(), bias.get());
W
Wangzheee 已提交
163 164 165
        fc_layer_int8->setName(
            ("fc_op_int8_conv1x1: Convolution (Output: " + output_name + ")")
                .c_str());
166
        engine_->SetTensorDynamicRange(fc_layer_int8->getOutput(0), out_scale);
167 168
        auto* fc_after_reshape_int8 = reshape_after_fc(
            fc_layer_int8->getOutput(0), x_dim, x_num_col_dims);
169
        if (activation_type == "relu") {
W
Wangzheee 已提交
170
          fc_after_reshape_int8->setName(
171
              ("int8_reshape_after_fc: Shuffle (Output: " + output_name + ")")
W
Wangzheee 已提交
172
                  .c_str());
173 174
          engine_->SetTensorDynamicRange(fc_after_reshape_int8->getOutput(0),
                                         out_scale);
175
          nvinfer1::IActivationLayer* relu_layer_int8 = TRT_ENGINE_ADD_LAYER(
176
              engine_, Activation, *(fc_after_reshape_int8->getOutput(0)),
177 178 179 180
              nvinfer1::ActivationType::kRELU);
          RreplenishLayerAndOutput(relu_layer_int8, "relu_after_fc_shuffle",
                                   {output_name}, test_mode);
        } else {
W
Wangzheee 已提交
181 182
          RreplenishLayerAndOutput(fc_after_reshape_int8,
                                   "fc_op_int8_reshape_after_fc: Shuffle",
183 184
                                   {output_name}, test_mode);
        }
185
      } else {
186
        // add fc layer
187
        auto* fc_layer_float =
188 189
            TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *inputs, n_output,
                                 weight.get(), bias.get());
W
Wangzheee 已提交
190 191 192
        fc_layer_float->setName(
            ("fc_op_float: FullyConnected (Output: " + output_name + ")")
                .c_str());
193 194
        auto* fc_after_reshape_float = reshape_after_fc(
            fc_layer_float->getOutput(0), x_dim, x_num_col_dims);
195
        if (activation_type == "relu") {
W
Wangzheee 已提交
196
          fc_after_reshape_float->setName(
197
              ("float_reshape_after_fc: Shuffle (Output: " + output_name + ")")
W
Wangzheee 已提交
198
                  .c_str());
199
          nvinfer1::IActivationLayer* relu_layer_float = TRT_ENGINE_ADD_LAYER(
200
              engine_, Activation, *(fc_after_reshape_float->getOutput(0)),
201 202 203 204
              nvinfer1::ActivationType::kRELU);
          RreplenishLayerAndOutput(relu_layer_float, "relu_after_fc_shuffle",
                                   {output_name}, test_mode);
        } else {
205
          RreplenishLayerAndOutput(fc_after_reshape_float, "shuffle_after_fc",
206 207
                                   {output_name}, test_mode);
        }
208 209 210
      }
    };

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    bool transpose_y = false;
    if (op_desc.HasAttr("transpose_Y")) {
      transpose_y = BOOST_GET_CONST(bool, op_desc.GetAttr("transpose_Y"));
    }
    int weight_w, weight_h;
    if (!transpose_y) {
      std::vector<float> weight_data_tmp;
      weight_data_tmp.reserve(Y_t->numel());
      memcpy(weight_data_tmp.data(), weight_data, Y_t->numel() * sizeof(float));
      tranpose_weight(weight_data_tmp.data(), weight_data, m, n);
      weight_w = n;
      weight_h = m;
    } else {
      weight_w = m;
      weight_h = n;
    }
    size_t n_output = weight_w;
228 229
    TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
                                  static_cast<void*>(weight_data),
N
nhzlx 已提交
230
                                  static_cast<size_t>(Y_t->numel())};
231 232
    weight.dims.assign({weight_w, weight_h});

233 234 235
    float* bias_data = nullptr;
    int bias_num = 0;
    if (with_bias) {
236
      auto* b_v = scope.GetVar(op_desc.Input("Bias").front());
237 238 239 240 241 242 243 244
      auto* b_t = b_v->GetMutable<framework::LoDTensor>();
      bias_data =
          engine_->GetWeightCPUData(op_desc.Input("Bias").front(), b_t, false);
      bias_num = b_t->numel();
    }
    TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT,
                                static_cast<void*>(bias_data),
                                static_cast<size_t>(bias_num)};
245

246 247 248
    // Running the TRT Static Shape mode: x_num_col_dims-1
    if (!engine_->with_dynamic_shape()) {
      x_num_col_dims--;
249
    }
250 251
    // If use tensorrt'oss, the x_dim and x_num_col_dims need change, and can
    // not add Shuffle layer in ernie's multihead.
W
Wangzheee 已提交
252
    if (engine_->use_oss() && engine_->with_ernie() && x_dim.nbDims == 4 &&
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
        x_dim.d[3] == 1 && x_num_col_dims == 2) {
      if (enable_int8) {
        // add conv1x1 layer
        nvinfer1::DimsHW nv_ksize(1, 1);
        auto* fc_layer_int8 =
            TRT_ENGINE_ADD_LAYER(engine_, Convolution, *X, n_output, nv_ksize,
                                 weight.get(), bias.get());
        if (activation_type == "relu") {
          fc_layer_int8->setName(
              ("ernie_fc_op_int8: Convolution (Output: " + output_name + ")")
                  .c_str());
          PADDLE_ENFORCE_EQ(
              op_desc.HasAttr("out_threshold"), true,
              platform::errors::InvalidArgument(
                  "must have out threshold in fc layers in int8 mode"));
          float out_scale =
              BOOST_GET_CONST(float, op_desc.GetAttr("out_threshold"));
          engine_->SetTensorDynamicRange(fc_layer_int8->getOutput(0),
                                         out_scale);
          nvinfer1::IActivationLayer* relu_layer_int8 = TRT_ENGINE_ADD_LAYER(
              engine_, Activation, *(fc_layer_int8->getOutput(0)),
              nvinfer1::ActivationType::kRELU);
          RreplenishLayerAndOutput(relu_layer_int8, "relu_after_ernie_fc_int8",
                                   {output_name}, test_mode);
        } else {
          RreplenishLayerAndOutput(fc_layer_int8,
                                   "ernie_fc_op_int8: Convolution",
                                   {output_name}, test_mode);
        }
      } else {
        // add fc layer
        auto* fc_layer_float = TRT_ENGINE_ADD_LAYER(
            engine_, FullyConnected, *X, n_output, weight.get(), bias.get());
        if (activation_type == "relu") {
          fc_layer_float->setName(
              ("ernie_fc_op_float: (Output: " + output_name + ")").c_str());
          nvinfer1::IActivationLayer* relu_layer_float = TRT_ENGINE_ADD_LAYER(
              engine_, Activation, *(fc_layer_float->getOutput(0)),
              nvinfer1::ActivationType::kRELU);
          RreplenishLayerAndOutput(relu_layer_float,
                                   "relu_after_ernie_fc_float", {output_name},
                                   test_mode);
        } else {
          RreplenishLayerAndOutput(fc_layer_float, "ernie_fc_op_float",
                                   {output_name}, test_mode);
        }
      }
    } else {  // need reshape input before and after fc
      PADDLE_ENFORCE_GT(
          x_dim.nbDims, x_num_col_dims,
          platform::errors::InvalidArgument(
              "Params and input dims mismatch. Paddle-TRT FC "
              "converter expects x_dim.nbDims > x_num_col_dims, but "
              "x_dim.nbDims : %d, x_num_col_dims : %d.",
              x_dim.nbDims, x_num_col_dims));
      auto* reshape_before_fc_layer =
          reshape_before_fc(X, x_dim, x_num_col_dims, output_name);
      auto* reshape_itensor = reshape_before_fc_layer->getOutput(0);
      if (enable_int8) {
        engine_->SetTensorDynamicRange(reshape_itensor, in_scale);
      }
      regist_fc(reshape_itensor, n_output, weight, bias);
P
Pei Yang 已提交
315
    }
316 317 318 319 320 321 322
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

N
nhzlx 已提交
323
REGISTER_TRT_OP_CONVERTER(fc, FcOpConverter);