fc_op.cc 10.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"

W
wanghuancoder 已提交
17 18 19
namespace paddle {
namespace framework {
class Scope;
20

W
wanghuancoder 已提交
21 22 23 24 25 26
namespace proto {
class OpDesc;
}  // namespace proto
}  // namespace framework
}  // namespace paddle

27 28 29 30 31 32 33 34 35 36
namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * FC converter convert a MUL op in Fluid to a FC layer in TRT.
 */
class FcOpConverter : public OpConverter {
 public:
  void operator()(const framework::proto::OpDesc& op,
37
                  const framework::Scope& scope, bool test_mode) override {
38
    VLOG(3) << "convert a fluid fc op to tensorrt fc layer without bias";
Y
Yan Chunwei 已提交
39
    framework::OpDesc op_desc(op, nullptr);
40 41 42 43 44 45 46 47 48

    auto input_names = op_desc.InputNames();
    bool with_bias = input_names.size() >= 3;
    std::string w_name = "Y";
    std::string i_name = "X";
    if (with_bias) {
      w_name = "W";
      i_name = "Input";
    }
49
    // Declare inputs
50
    auto* X = engine_->GetITensor(op_desc.Input(i_name).front());
51
    // Declare weights
52
    auto* Y_v = scope.FindVar(op_desc.Input(w_name).front());
53 54 55
    PADDLE_ENFORCE_NOT_NULL(
        Y_v, platform::errors::NotFound(
                 "Can not find %s presistale var of fc in scope.", w_name));
56
    auto* Y_t = Y_v->GetMutable<framework::LoDTensor>();
P
Pei Yang 已提交
57 58
    const int x_num_col_dims =
        op_desc.HasAttr("x_num_col_dims")
59
            ? BOOST_GET_CONST(int, op_desc.GetAttr("x_num_col_dims"))
P
Pei Yang 已提交
60
            : (op_desc.HasAttr("in_num_col_dims")
61
                   ? BOOST_GET_CONST(int, op_desc.GetAttr("in_num_col_dims"))
P
Pei Yang 已提交
62 63 64
                   : 1);
    const std::string activation_type =
        op_desc.HasAttr("activation_type")
65
            ? BOOST_GET_CONST(std::string, op_desc.GetAttr("activation_type"))
P
Pei Yang 已提交
66
            : "";
67
    // This may trigger a GPU->CPU copy, because TRT's weight can only be
68
    // assigned from CPU memory, which can't be avoided.
69
    float* weight_data = nullptr;
70
    bool enable_int8 = op_desc.HasAttr("enable_int8");
71
    float in_scale = 0.;
72 73
    if (enable_int8) {
#if IS_TRT_VERSION_GE(5000)
74
      CHECK(op_desc.HasAttr(i_name + "_scale"));
75
      in_scale =
76
          BOOST_GET_CONST(float, op_desc.GetAttr(i_name + "_scale")) * 127;
77
      auto weight_scale =
78
          BOOST_GET_CONST(std::vector<float>, op_desc.GetAttr("weight_scale"));
79 80 81 82 83 84 85 86
      weight_data = engine_->GetWeightCPUData(op_desc.Input(w_name).front(),
                                              Y_t, true, weight_scale);
      engine_->SetTensorDynamicRange(X, in_scale);
#endif
    } else {
      weight_data =
          engine_->GetWeightCPUData(op_desc.Input(w_name).front(), Y_t, false);
    }
N
nhzlx 已提交
87

88 89 90 91 92
    PADDLE_ENFORCE_EQ(Y_t->dims().size(), 2UL,
                      platform::errors::InvalidArgument(
                          "The fc's weight should be a matrix with 2 dims, but "
                          "it's %d-dimensional.",
                          Y_t->dims().size()));  // a matrix
93
    size_t n_output = Y_t->dims()[1];
N
nhzlx 已提交
94

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    int m = Y_t->dims()[0];
    int n = Y_t->dims()[1];

    auto tranpose_weight = [](const float* src, float* dst, int m, int n) {
      for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
          dst[j * m + i] = src[i * n + j];
        }
      }
    };

    auto regist_fc = [&](nvinfer1::ITensor* inputs, int n_output,
                         TensorRTEngine::Weight& weight,
                         TensorRTEngine::Weight& bias) {
      auto* fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *inputs,
                                            n_output, weight.get(), bias.get());

      auto output_name = op_desc.Output("Out").front();
      if (activation_type == "relu") {
        nvinfer1::IActivationLayer* relu_layer =
            TRT_ENGINE_ADD_LAYER(engine_, Activation, *(fc_layer->getOutput(0)),
                                 nvinfer1::ActivationType::kRELU);
        RreplenishLayerAndOutput(relu_layer, "fc", {output_name}, test_mode);
      } else {
        RreplenishLayerAndOutput(fc_layer, "fc", {output_name}, test_mode);
      }
    };

    std::vector<float> weight_data_tmp;
    weight_data_tmp.reserve(Y_t->numel());
    memcpy(weight_data_tmp.data(), weight_data, Y_t->numel() * sizeof(float));
    tranpose_weight(weight_data_tmp.data(), weight_data, m, n);
N
nhzlx 已提交
127

128 129
    TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
                                  static_cast<void*>(weight_data),
N
nhzlx 已提交
130
                                  static_cast<size_t>(Y_t->numel())};
131 132
    weight.dims.assign({n, m});

133 134 135
    float* bias_data = nullptr;
    int bias_num = 0;
    if (with_bias) {
136
      auto* b_v = scope.GetVar(op_desc.Input("Bias").front());
137 138 139 140 141 142 143 144
      auto* b_t = b_v->GetMutable<framework::LoDTensor>();
      bias_data =
          engine_->GetWeightCPUData(op_desc.Input("Bias").front(), b_t, false);
      bias_num = b_t->numel();
    }
    TensorRTEngine::Weight bias{nvinfer1::DataType::kFLOAT,
                                static_cast<void*>(bias_data),
                                static_cast<size_t>(bias_num)};
145

146
    if (engine_->with_dynamic_shape()) {
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
      // not NCHW layout, but NLP layout with added 'x 1 x 1'
      auto x_dim = X->getDimensions();
      if (x_dim.nbDims == 3 || x_dim.nbDims == 2) {
        auto output_name = op_desc.Output("Out").front();
        // add shuffle before fc
        nvinfer1::Dims reshape_before_fc_dim;
        reshape_before_fc_dim.nbDims = x_dim.nbDims + 2;
        for (int i = 0; i < x_dim.nbDims; i++) {
          reshape_before_fc_dim.d[i] = 0;
        }
        reshape_before_fc_dim.d[x_dim.nbDims] = 1;
        reshape_before_fc_dim.d[x_dim.nbDims + 1] = 1;
        auto* reshape_before_fc_layer =
            TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *X);
        reshape_before_fc_layer->setReshapeDimensions(reshape_before_fc_dim);
        reshape_before_fc_layer->setName(
            ("shuffle_before_fc(Output: " + output_name + ")").c_str());

        // add fc layer
        auto* fc_layer = TRT_ENGINE_ADD_LAYER(
            engine_, FullyConnected, *reshape_before_fc_layer->getOutput(0),
            n_output, weight.get(), bias.get());
        fc_layer->setName(("fc_layer(Output: " + output_name + ")").c_str());

        // add shuffle after fc
        nvinfer1::Dims reshape_after_fc_dim;
        if (x_dim.nbDims == 3) {
          if (x_num_col_dims == 2) {
            reshape_after_fc_dim.nbDims = 3;
            reshape_after_fc_dim.d[0] = 0;
            reshape_after_fc_dim.d[1] = 0;
            reshape_after_fc_dim.d[2] = 0;
          } else {
            reshape_after_fc_dim.nbDims = 2;
            reshape_after_fc_dim.d[0] = 0;
            auto dim = fc_layer->getOutput(0)->getDimensions();
            reshape_after_fc_dim.d[1] = dim.d[1] * dim.d[2];
          }
          // x_dim.nbDims == 2
        } else {
          reshape_after_fc_dim.nbDims = 2;
          reshape_after_fc_dim.d[0] = 0;
          reshape_after_fc_dim.d[1] = 0;
        }
        auto* reshape_after_fc_layer =
            TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *fc_layer->getOutput(0));
        reshape_after_fc_layer->setReshapeDimensions(reshape_after_fc_dim);

        if (activation_type == "relu") {
          reshape_after_fc_layer->setName(
              ("shuffle_after_fc(Output: " + output_name + ")").c_str());
          nvinfer1::IActivationLayer* relu_layer = TRT_ENGINE_ADD_LAYER(
              engine_, Activation, *(reshape_after_fc_layer->getOutput(0)),
              nvinfer1::ActivationType::kRELU);
          RreplenishLayerAndOutput(relu_layer, "relu_after_fc_shuffle",
                                   {output_name}, test_mode);
        } else {
          RreplenishLayerAndOutput(reshape_after_fc_layer, "shuffle_after_fc",
                                   {output_name}, test_mode);
        }
      } else {
        regist_fc(X, n_output, weight, bias);
      }
210 211
      return;
    }
P
Pei Yang 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    // in order to handle situations in NLP models(input dims < 3,
    // x_num_col_dims != 1, etc.), reshape input to perform FC correctly.
    auto* reshape_itensor = X;
    int input_dims = X->getDimensions().nbDims;
    auto input_d = X->getDimensions().d;
    int reshape_dim3[3] = {0};
    int reshape_dim4[4] = {0};
    PADDLE_ENFORCE_LE(x_num_col_dims, input_dims,
                      platform::errors::InvalidArgument(
                          "Params and input dims mismatch. Paddle-TRT FC "
                          "converter expects x_num_col_dims <= input dims"));
    if (x_num_col_dims == 1) {
      if (input_dims == 4) {
        PADDLE_ENFORCE_EQ(
            input_d[3], 1,
            platform::errors::InvalidArgument(
                "Invalid dimensions. When x_num_col_dims equals to 1 and input "
                "dims equals to 4, the last dim of input must be 1, but got %d",
                input_d[3]));
      }
      for (int i = 0; i < 3; i++) {
        if (i < input_dims) {
          reshape_dim3[i] = input_d[i];
        } else {
          reshape_dim3[i] = 1;
        }
      }
      nvinfer1::Dims3 reshape_dim(reshape_dim3[0], reshape_dim3[1],
                                  reshape_dim3[2]);
      auto* reshape_layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *X);
      reshape_layer->setReshapeDimensions(reshape_dim);
      reshape_itensor = reshape_layer->getOutput(0);
244 245 246
      if (enable_int8) {
        engine_->SetTensorDynamicRange(reshape_itensor, in_scale);
      }
P
Pei Yang 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
    } else {
      PADDLE_ENFORCE_NE(input_dims, 1,
                        platform::errors::InvalidArgument(
                            "Invalid dimensions. When x_num_col_dims equals to "
                            "2, input_dims should not be 1"));
      for (int i = 0; i < 4; i++) {
        if (i < input_dims) {
          reshape_dim4[i] = input_d[i];
        } else {
          reshape_dim4[i] = 1;
        }
      }
      nvinfer1::Dims4 reshape_dim(reshape_dim4[0], reshape_dim4[1],
                                  reshape_dim4[2], reshape_dim4[3]);
      auto* reshape_layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *X);
      reshape_layer->setReshapeDimensions(reshape_dim);
      reshape_itensor = reshape_layer->getOutput(0);
264 265 266
      if (enable_int8) {
        engine_->SetTensorDynamicRange(reshape_itensor, in_scale);
      }
P
Pei Yang 已提交
267
    }
268
    regist_fc(reshape_itensor, n_output, weight, bias);
269 270 271 272 273 274 275
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

N
nhzlx 已提交
276
REGISTER_TRT_OP_CONVERTER(fc, FcOpConverter);