unsqueeze_op.cc 7.7 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
#include <vector>
17
#include "paddle/fluid/framework/op_registry.h"
18 19 20 21

namespace paddle {
namespace operators {

22
class UnsqueezeOpInferShape : public framework::InferShapeBase {
23
 public:
24
  void operator()(framework::InferShapeContext *ctx) const override {
25 26 27 28 29
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of UnsqueezeOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of UnsqueezeOp should not be null.");

30
    const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
31 32 33
    PADDLE_ENFORCE(!axes.empty(),
                   "The unsqueeze axes information must be set by Attr(axes).");

34
    const auto &x_dims = ctx->GetInputDim("X");
35
    // Validity Check: input tensor dims (<6).
36
    PADDLE_ENFORCE(static_cast<int>(x_dims.size()) <= 6,
37
                   "Invalid dimensions, dynamic dimensions should within "
38
                   "[1, 6] dimensions (Eigen limit).");
39 40
    auto out_dims = GetOutputShape(axes, x_dims);
    ctx->SetOutputDim("Out", out_dims);
41 42 43 44 45
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }
46 47
  }

48
  static framework::DDim GetOutputShape(const std::vector<int> unsqz_dims,
49
                                        const framework::DDim &in_dims) {
50 51 52 53 54 55 56 57 58 59 60 61
    unsigned int unsqz_mask = 0;
    unsigned int front = 0, back = 0;
    int output_dims_size = in_dims.size();

    // Simulate insert by bit calc.
    for (int axis : unsqz_dims) {
      int cur = axis < 0 ? axis + output_dims_size + 1 : axis;
      // Vaildity Check: the axis bound
      PADDLE_ENFORCE(
          cur >= 0 && cur <= output_dims_size,
          "The unsqueeze dims must be within range of current rank.");
      // Save the front part.
62
      front = unsqz_mask & ((1 << cur) - 1);
63
      // Move the back part.
64
      back = unsqz_mask & ~((1 << cur) - 1);
65 66
      back <<= 1;
      // Merge two part.
67
      back |= (1 << cur);
68 69 70 71
      unsqz_mask = front | back;
      // Add the output size.
      output_dims_size++;
      // Validity Check: rank range.
72
      PADDLE_ENFORCE(output_dims_size <= 6,
73
                     "The output tensor's rank should be less than 6.");
74 75
    }

76 77 78 79
    // Make output shape
    std::vector<int64_t> output_shape(output_dims_size, 0);
    for (int in_idx = 0, out_idx = 0; out_idx < output_dims_size; ++out_idx) {
      if ((unsqz_mask & (1 << out_idx)) == 0) {
80 81 82 83 84 85 86 87 88 89
        output_shape[out_idx] = in_dims[in_idx++];
      } else {
        output_shape[out_idx] = 1;
      }
    }

    return framework::make_ddim(output_shape);
  }
};

90 91 92 93 94 95 96 97 98 99 100 101 102
class UnsqueezeOp : public framework::OperatorBase {
 public:
  UnsqueezeOp(const std::string &type, const framework::VariableNameMap &inputs,
              const framework::VariableNameMap &outputs,
              const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
    auto &axes = Attr<std::vector<int>>("axes");
    auto x_dims = scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();
    auto out_dims = UnsqueezeOpInferShape::GetOutputShape(axes, x_dims);
103 104
    // auto out_dims =
    // scope.FindVar(Output("Out"))->Get<framework::LoDTensor>().dims();
105 106 107 108 109 110 111 112 113 114 115 116

    framework::AttributeMap attrs;
    attrs["shape"] = framework::vectorize2int(out_dims);
    attrs["inplace"] = Attr<bool>("inplace");
    // Invoke Reshape op.
    auto reshape_op = framework::OpRegistry::CreateOp(
        "reshape", {{"X", {Input("X")}}, {"Shape", {}}},
        {{"Out", {Output("Out")}}}, attrs);
    reshape_op->Run(scope, place);
  }
};

117 118 119 120 121 122 123
class UnsqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor). The input tensor of unsqueeze operator.");
    AddOutput("Out", "(Tensor). The output tensor of unsqueeze operator.");
    AddAttr<std::vector<int>>("axes",
                              "(std::vector<int>). List of positive integers,"
124 125 126 127 128 129 130 131 132 133 134 135 136
                              " indicate the dimensions to be inserted")
        .AddCustomChecker([](const std::vector<int> &axes) {
          // Validity Check: axes dims (<6).
          PADDLE_ENFORCE(static_cast<int>(axes.size()) < 6,
                         "Invalid dimensions, dynamic dimensions should within "
                         "[1, 6] dimensions (Eigen limit).");
          // Validity Check: the range of unsqueeze aixs.
          for (int axis : axes) {
            PADDLE_ENFORCE(axis < 6,
                           "Invalid dimensions, input axis should within "
                           "[1, 6] dimensions (Eigen limit).");
          }
        });
137 138 139 140 141 142 143 144
    AddAttr<bool>(
        "inplace",
        "(default: false) Unsqueeze the source tensor's shape without "
        "memory copy. When Attr(inplace) is set true, the output "
        "tensor shares memory with Input(X), otherwise, a new output "
        "tensor is created, and its data are copied from Input(x).")
        .SetDefault(false);
    AddComment(R"DOC(
145 146 147 148 149 150 151 152 153
    Unsqueeze Operator.
    
    Insert single-dimensional entries to the shape of a tensor. 
    Takes one required argument axes, a list of dimensions that will be inserted. 
    Dimension indices in axes are as seen in the output tensor. 

    For example: 
      Given a tensor such that tensor with shape [3, 4, 5], 
      then Unsqueeze(tensor, axes=[0, 4]) has shape [1, 3, 4, 5, 1]
154 155 156 157
    )DOC");
  }
};

158
class UnsqueezeGradInferShape : public framework::InferShapeBase {
159
 public:
160
  void operator()(framework::InferShapeContext *ctx) const override {
161
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
162
    ctx->ShareLoD("X", framework::GradVarName("X"));
163
  }
164
};
165

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
class UnsqueezeGradOp : public framework::OperatorBase {
 public:
  UnsqueezeGradOp(const std::string &type,
                  const framework::VariableNameMap &inputs,
                  const framework::VariableNameMap &outputs,
                  const framework::AttributeMap &attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
    auto dx_name = Output(framework::GradVarName("X"));
    auto dout_name = Input(framework::GradVarName("Out"));
    auto x_dims = scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();

    framework::AttributeMap attrs;
    attrs["shape"] = framework::vectorize2int(x_dims);
    attrs["inplace"] = Attr<bool>("inplace");

    auto reshape_op = framework::OpRegistry::CreateOp(
        "reshape", {{"X", {dout_name}}, {"Shape", {}}}, {{"Out", {dx_name}}},
        attrs);
    reshape_op->Run(scope, place);
189 190 191 192 193 194
  }
};

}  // namespace operators
}  // namespace paddle

195 196 197
// Tell linker to use reshape op.
USE_OP(reshape);

198 199
namespace ops = paddle::operators;
REGISTER_OPERATOR(unsqueeze, ops::UnsqueezeOp, ops::UnsqueezeOpMaker,
200
                  ops::UnsqueezeOpInferShape,
201
                  paddle::framework::DefaultGradOpDescMaker<true>);
202 203
REGISTER_OPERATOR(unsqueeze_grad, ops::UnsqueezeGradOp,
                  ops::UnsqueezeGradInferShape);