elementwise_base.h 29.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/fluid/platform/transform.h"
18 19 20
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/empty_kernel.h"
21 22
#include "paddle/phi/kernels/funcs/common_shape.h"
#include "paddle/phi/kernels/funcs/elementwise_utils.h"
23
#include "paddle/phi/kernels/funcs/math_function.h"
24

25
#if defined(__NVCC__) || defined(__HIPCC__) || defined(__xpu__)
26
#include "paddle/fluid/platform/function_traits.h"
27
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
28
#include "paddle/phi/kernels/funcs/aligned_vector.h"
29
#include "paddle/phi/kernels/primitive/kernel_primitives.h"
30

31
#define HOSTDEVICE __host__ __device__
32
namespace kps = phi::kps;
33 34 35

#endif

36
namespace phi {
37

38 39 40 41 42
enum ElementwiseType { kUnary = 1, kBinary = 2, kTernary = 3, kAny = -1 };
/* Packing scalar type T(float, int etc.) into Array<T, NumOuts> type
   for supporting multiple-output feature in elementwise system.*/
template <class T, int Num>
using ConditionalT =
43
    typename std::conditional_t<Num == 1, T, phi::Array<T, Num>>;
44 45

namespace funcs {
46
using DDim = phi::DDim;
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

template <typename T, typename DeviceContext>
class RowwiseTransformIterator;

template <typename T, typename DeviceContext>
class MidWiseTransformIterator;

// NOTE(dzhwinter): ptrdiff_t in iterator is deperecated in c++17
template <typename T>
class RowwiseTransformIterator<T, CPUContext>
    : public std::iterator<std::random_access_iterator_tag,
                           T,
                           std::ptrdiff_t,
                           T *,
                           T &> {
 public:
  RowwiseTransformIterator(const T *ptr, int n) : ptr_(ptr), i_(0), n_(n) {}

  RowwiseTransformIterator<T, CPUContext> &operator++() {
    ++i_;
    if (UNLIKELY(i_ == n_)) {
      i_ = 0;
    }
    return *this;
  }

  RowwiseTransformIterator<T, CPUContext> &operator+(int n) {
    while (n-- > 0) {
      ++i_;
      if (UNLIKELY(i_ == n_)) {
        i_ = 0;
      }
    }

    return *this;
  }

  bool operator==(const RowwiseTransformIterator<T, CPUContext> &rhs) const {
    return (ptr_ + i_) == &(*rhs);
  }

  bool operator!=(const RowwiseTransformIterator<T, CPUContext> &rhs) const {
    return (ptr_ + i_) != &(*rhs);
  }

  const T &operator*() { return ptr_[i_]; }

 private:
  const T *ptr_;
  int i_;
  int64_t n_;
};

template <typename T>
class MidWiseTransformIterator<T, CPUContext>
    : public std::iterator<std::random_access_iterator_tag,
                           T,
                           std::ptrdiff_t,
                           T *,
                           T &> {
 public:
  MidWiseTransformIterator(const T *ptr, int n, int post)
      : ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {}

  MidWiseTransformIterator<T, CPUContext> &operator++() {
    ++j_;
    if (UNLIKELY(j_ == post_)) {
      ++i_;
      j_ = 0;
      if (UNLIKELY(i_ == n_)) {
        i_ = 0;
      }
    }
    return *this;
  }

  MidWiseTransformIterator<T, CPUContext> &operator+(int n) {
    while (n-- > 0) {
      ++j_;
      if (UNLIKELY(j_ == post_)) {
        ++i_;
        j_ = 0;
        if (UNLIKELY(i_ == n_)) {
          i_ = 0;
        }
      }
    }
    return *this;
  }

  bool operator==(const MidWiseTransformIterator<T, CPUContext> &rhs) const {
    return (ptr_ + i_) == &(*rhs);
  }

  bool operator!=(const MidWiseTransformIterator<T, CPUContext> &rhs) const {
    return (ptr_ + i_) != &(*rhs);
  }

  const T &operator*() { return ptr_[i_]; }

 private:
  const T *ptr_;
  int64_t i_;
  int64_t j_;
  int64_t n_;
  int64_t post_;
};

#if defined(__NVCC__) || defined(__HIPCC__)
template <typename T>
157 158
class RowwiseTransformIterator<T, GPUContext>
    : public thrust::iterator_adaptor<RowwiseTransformIterator<T, GPUContext>,
159 160
                                      const T *> {
 public:
161
  typedef thrust::iterator_adaptor<RowwiseTransformIterator<T, GPUContext>,
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
                                   const T *>
      super_t;
  HOSTDEVICE RowwiseTransformIterator(const T *x, int n)
      : super_t(x), begin_(x), n_(n) {}
  friend class thrust::iterator_core_access;

 private:
  unsigned int n_;
  const T *begin_;
  HOSTDEVICE typename super_t::reference dereference() const {
    return *(begin_ + (this->base() - begin_) % n_);
  }
};

template <typename T>
177 178
class MidWiseTransformIterator<T, GPUContext>
    : public thrust::iterator_adaptor<MidWiseTransformIterator<T, GPUContext>,
179 180
                                      const T *> {
 public:
181
  typedef thrust::iterator_adaptor<MidWiseTransformIterator<T, GPUContext>,
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
                                   const T *>
      super_t;
  HOSTDEVICE MidWiseTransformIterator(const T *x, int n, int post)
      : super_t(x), begin_(x), n_(n), post_(post) {}
  friend class thrust::iterator_core_access;

 private:
  unsigned int post_;
  unsigned int n_;
  const T *begin_;
  HOSTDEVICE typename super_t::reference dereference() const {
    return *(begin_ + (((this->base() - begin_) / post_) % n_));
  }
};
#endif

template <typename Functor,
          typename T,
          typename DeviceContext,
          typename OutType = T>
class TransformFunctor {
 public:
  TransformFunctor(const DenseTensor &x,
                   const DenseTensor &y,
                   DenseTensor *z,
                   const DeviceContext &ctx,
                   Functor func,
                   const bool is_xsize_larger = true)
      : x_(x.data<T>()),
        y_(y.data<T>()),
212
        z_(ctx.template Alloc<OutType>(z)),
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
        nx_(x.numel()),
        ctx_(ctx),
        func_(func),
        is_xsize_larger_(is_xsize_larger) {
    if (is_xsize_larger_ == false) {
      nx_ = y.numel();
    }
  }

  inline void Run() const {
    paddle::platform::Transform<DeviceContext> trans;
    trans(ctx_, x_, x_ + nx_, y_, z_, func_);
  }

  inline void RunRowWise(int n, int pre) const {
    paddle::platform::Transform<DeviceContext> trans;
    if (is_xsize_larger_) {
      trans(ctx_,
            x_,
            x_ + nx_,
            RowwiseTransformIterator<T, DeviceContext>(y_, n),
            z_,
            func_);
    } else {
      trans(ctx_,
            y_,
            y_ + nx_,
            RowwiseTransformIterator<T, DeviceContext>(x_, n),
            z_,
            func_);
    }
  }

  inline void RunMidWise(int n, int pre, int post) const {
    paddle::platform::Transform<DeviceContext> trans;
    if (is_xsize_larger_) {
      trans(ctx_,
            x_,
            x_ + nx_,
            MidWiseTransformIterator<T, DeviceContext>(y_, n, post),
            z_,
            func_);
    } else {
      trans(ctx_,
            y_,
            y_ + nx_,
            MidWiseTransformIterator<T, DeviceContext>(x_, n, post),
            z_,
            func_);
    }
  }

 private:
  const T *x_;
  const T *y_;
  OutType *z_;
  int64_t nx_;
  const DeviceContext &ctx_;
  Functor func_;
  bool is_xsize_larger_;
};

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
template <typename Functor, typename T, typename OutType = T>
void CommonForwardBroadcastCPU(const DenseTensor &x,
                               const DenseTensor &y,
                               DenseTensor *z,
                               int *x_dims_array,
                               int *y_dims_array,
                               int *out_dims_array,
                               int max_dim,
                               const CPUContext &ctx,
                               Functor func,
                               const bool is_xsize_larger = true) {
  std::vector<int> index_array(max_dim, 0);
  const T *x_data = x.data<T>();
  const T *y_data = y.data<T>();
  PADDLE_ENFORCE_NOT_NULL(
      x_data, errors::InvalidArgument("The input X should not be empty."));
  PADDLE_ENFORCE_NOT_NULL(
      y_data, errors::InvalidArgument("The input Y should not be empty."));
  OutType *out_data = ctx.Alloc<OutType>(z);

  const int out_size = std::accumulate(
      out_dims_array, out_dims_array + max_dim, 1, std::multiplies<int>());
  int x_index, y_index;
  for (int out_index = 0; out_index < out_size; ++out_index) {
    x_index = GetElementwiseIndex(x_dims_array, max_dim, index_array.data());
    y_index = GetElementwiseIndex(y_dims_array, max_dim, index_array.data());
    if (is_xsize_larger) {
      out_data[out_index] = func(x_data[x_index], y_data[y_index]);
    } else {
      out_data[out_index] = func(y_data[y_index], x_data[x_index]);
    }

    UpdateElementwiseIndexArray(out_dims_array, max_dim, index_array.data());
308 309 310
  }
}

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
template <typename Functor, typename T, typename OutType = T>
void CommonElementwiseBroadcastForward(const CPUContext &dev_ctx,
                                       const DenseTensor &x,
                                       const DenseTensor &y,
                                       DenseTensor *z,
                                       const DDim &x_dims,
                                       const DDim &y_dims,
                                       Functor func,
                                       int axis,
                                       const bool is_xsize_larger = true) {
  int max_dim = (std::max)(x_dims.size(), y_dims.size());
  axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
  PADDLE_ENFORCE_GE(
      axis,
      0,
      phi::errors::InvalidArgument(
          "Axis should be great than or equal to 0, but received axis is %d.",
          axis));
  PADDLE_ENFORCE_LT(axis,
                    max_dim,
                    phi::errors::InvalidArgument(
                        "Axis should be less than %d, but received axis is %d.",
                        max_dim,
                        axis));
  std::vector<int> x_dims_array(max_dim);
  std::vector<int> y_dims_array(max_dim);
  std::vector<int> out_dims_array(max_dim);
  GetBroadcastDimsArrays(x_dims,
                         y_dims,
                         x_dims_array.data(),
                         y_dims_array.data(),
                         out_dims_array.data(),
                         max_dim,
                         axis);

  CommonForwardBroadcastCPU<Functor, T, OutType>(x,
                                                 y,
                                                 z,
                                                 x_dims_array.data(),
                                                 y_dims_array.data(),
                                                 out_dims_array.data(),
                                                 max_dim,
                                                 dev_ctx,
                                                 func,
                                                 is_xsize_larger);
}

// It is a common CPU implementation to compute binary calculation with the
// support of broadcast. Note:
// 1. CPU implementation cannot support the case when x needs broadcast, thus
//    this function need to be called with XxxFunctor and XxxInverseFunctor,
//    like AddFunctor and InverseAddFunctor.
// 2. The corresponding GPU implementation supports all the broadcast cases,
//    thus there is no need to define and call with XxxInverseFunctor.
// TODO(liuyiqun): optimize the CPU implementation to support all broadcast
// cases and avoid the need of XxxInverseFunctor.
template <typename Functor, typename T, typename OutType = T>
void ElementwiseCompute(const CPUContext &dev_ctx,
                        const DenseTensor &x,
                        const DenseTensor &y,
                        int axis,
                        Functor func,
                        DenseTensor *z) {
  dev_ctx.Alloc<OutType>(z);
  auto x_dims = x.dims();
  auto y_dims = y.dims();
  bool is_xsize_larger = true;
  int max_dim = x_dims.size();
  if (x_dims.size() < y_dims.size()) {
    is_xsize_larger = false;
    max_dim = y_dims.size();
  }
  TransformFunctor<Functor, T, CPUContext, OutType> functor(
      x, y, z, dev_ctx, func, is_xsize_larger);
  if (x_dims == y_dims) {
    functor.Run();
    return;
  }

  axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
  PADDLE_ENFORCE_GE(
      axis,
      0,
      errors::InvalidArgument(
          "Axis should be great than or equal to 0, but received axis is %d.",
          axis));
  PADDLE_ENFORCE_LT(axis,
                    max_dim,
                    errors::InvalidArgument(
                        "Axis should be less than %d, but received axis is %d.",
                        max_dim,
                        axis));

  int pre, n, post, is_run_common_broadcast, axis_trim = 0;
  if (is_xsize_larger) {
    auto y_dims_trimed = TrimTrailingSingularDims(y_dims);
    axis_trim = (y_dims_trimed.size() == 0) ? x_dims.size() : axis;
    GetMidDims(x_dims,
               y_dims_trimed,
               axis_trim,
               &pre,
               &n,
               &post,
               &is_run_common_broadcast);
  } else {
    auto x_dims_trimed = TrimTrailingSingularDims(x_dims);
    axis_trim = (x_dims_trimed.size() == 0) ? y_dims.size() : axis;
    GetMidDims(y_dims,
               x_dims_trimed,
               axis_trim,
               &pre,
               &n,
               &post,
               &is_run_common_broadcast);
  }
  // special case for common implementation.
  // case 1: x=[2,3,1,5], y=[2,1,4,1]
  // case 2: x=[2,3,4], y=[1,1,4]
  if (is_run_common_broadcast == 1) {
    CommonElementwiseBroadcastForward<Functor, T, OutType>(
        dev_ctx, x, y, z, x_dims, y_dims, func, axis, is_xsize_larger);
    return;
  }

  if (post == 1) {
    functor.RunRowWise(n, pre);
    return;
  } else {
    functor.RunMidWise(n, pre, post);
    return;
441 442 443
  }
}

444
// for broadcast backwards
445 446
static inline std::vector<int> GetReduceDim(const DDim &in,
                                            const DDim &out,
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
                                            int axis) {
  axis =
      (axis == -1 ? std::abs(static_cast<int>(out.size() - in.size())) : axis);
  std::vector<int> dims;
  for (int i = 0; i < axis; ++i) {
    dims.push_back(i);
  }
  for (int i = 0; i < in.size(); ++i) {
    if (out[i + axis] != in[i]) {
      dims.push_back(i + axis);
    }
  }
  for (int i = axis + in.size(); i < out.size(); ++i) {
    dims.push_back(i);
  }
  return dims;
}

template <typename DeviceContext, typename T>
static inline void GetDoubleGradSafeTensor(const DeviceContext &dev_ctx,
                                           const DenseTensor &x,
                                           const DenseTensor *ddx,
                                           DenseTensor *ddx_safe) {
  if (ddx) {
    *ddx_safe = *ddx;
  } else {
473 474
    auto meta = phi::DenseTensorMeta(x.dtype(), x.dims(), x.layout());
    *ddx_safe = phi::Empty(dev_ctx, std::move(meta));
475
    ddx_safe->mutable_data(dev_ctx.GetPlace());
476
    SetConstant<DeviceContext, T> set_zero;
477 478 479 480 481 482 483 484 485 486 487
    set_zero(dev_ctx, ddx_safe, static_cast<T>(0));
  }
}

inline void ElementwiseGradPreProcess(const DenseTensor &dout,
                                      DenseTensor *dx) {
  if (dx != nullptr) {
    dx->set_lod(dout.lod());
  }
}

488
#if defined(__NVCC__) || defined(__HIPCC__) || defined(__xpu__)
489

490 491 492 493 494 495 496
// static unroller
template <template <int Index, int VecSize> typename Func,
          int VecSize,
          int End,
          int Begin = 0>
struct Unroller {
  template <typename... Args>
497
  static HOSTDEVICE inline void step(Args &&...args) {
498 499 500 501 502 503 504 505
    Func<Begin, VecSize>::Apply(std::forward<Args>(args)...);
    Unroller<Func, VecSize, End, Begin + 1>::step(args...);
  }
};

template <template <int Index, int VecSize> typename Func, int VecSize, int End>
struct Unroller<Func, VecSize, End, End> {
  template <typename... Args>
506
  static HOSTDEVICE inline void step(Args &&...args) {}
507 508 509 510 511 512 513
};

template <int Index, int VecSize>
struct Loader {
  template <typename Array, typename ArgsT>
  static __device__ void Apply(const Array &in,
                               ArgsT *args,
514
                               kps::IndexType offset,
515
                               int num,
516
                               int read_lens,
517 518
                               bool is_boundary) {
    using Type = std::tuple_element_t<Index, ArgsT>;
519 520
    kps::Init<Type, ArgsT, Index, VecSize>(
        args, static_cast<Type>(1.0f), read_lens);
521 522
    if (is_boundary) {
      kps::ReadData<Type, VecSize, 1, 1, ArgsT, Index, true>(
523
          args,
524
          reinterpret_cast<const _ptr_ Type *>(in[Index]) + offset,
525 526
          num,
          read_lens);
527 528
    } else {
      kps::ReadData<Type, VecSize, 1, 1, ArgsT, Index, false>(
529
          args,
530
          reinterpret_cast<const _ptr_ Type *>(in[Index]) + offset,
531 532
          num,
          read_lens);
533 534 535 536 537 538 539 540 541
    }
  }
};

template <int Index, int VecSize>
struct InputSetter {
  template <typename Array>
  static HOSTDEVICE void Apply(
      const std::vector<const DenseTensor *> &ins_tensor, Array *ins_data) {
542
    (*ins_data)[Index] = (const _ptr_ char *)(ins_tensor[Index]->data());
543 544 545 546 547 548 549 550 551 552
  }
};

template <int Index, int VecSize>
struct VecSizeGetter {
  template <typename ArgsT>
  static HOSTDEVICE void Apply(const std::vector<const DenseTensor *> &ins,
                               const ArgsT &args,
                               int *vec_size) {
    using Type = std::tuple_element_t<Index, ArgsT>;
553 554
    *vec_size = std::min<int>(*vec_size,
                              phi::GetVectorizedSize(ins[Index]->data<Type>()));
555 556 557 558
  }
};

template <typename OutT, typename Functor>
559 560
int GetVectorizedSizeForTensors(const std::vector<const DenseTensor *> &ins,
                                const std::vector<DenseTensor *> &outs) {
561 562 563
  using Traits = paddle::platform::FunctionTraits<Functor>;
  using ArgsT = typename Traits::ArgsTuple;
  const int Arity = Traits::arity;
564
  int vec_size = 4;
565 566 567
  ArgsT arg;
  // The Arg VecSize=1 is to match the Unroller template.
  Unroller<VecSizeGetter, 1, Arity>::step(ins, arg, &vec_size);
568
  for (auto iter = outs.begin(); iter != outs.end(); ++iter) {
569 570
    vec_size =
        std::min<int>(vec_size, phi::GetVectorizedSize((*iter)->data<OutT>()));
571 572 573 574 575 576 577 578 579 580 581 582 583
  }
  return vec_size;
}

template <typename InT,
          typename OutT,
          int VecSize,
          typename Functor,
          int Arity,
          bool CallElementwiseAny = false>
struct ElementwisePrimitiveCaller {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
584 585
                                    OutT *result,
                                    int read_lens);
586 587 588 589 590 591
};

template <typename InT, typename OutT, int VecSize, typename Functor, int Arity>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, Arity, true> {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
592 593
                                    OutT *result,
                                    int read_lens) {
594 595 596 597 598
    kps::ElementwiseAny<InT, OutT, VecSize, 1, 1, Arity, Functor>(
        result, args, func);
  }
};

599 600 601 602
template <typename InT, typename OutT, int VecSize, typename Functor>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, 0, false> {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
603 604
                                    OutT *result,
                                    int read_lens) {
605
    kps::ElementwiseConstant<InT, OutT, VecSize, 1, 1, Functor>(result, func);
606 607 608
  }
};

609 610 611 612
template <typename InT, typename OutT, int VecSize, typename Functor>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, 1, false> {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
613 614
                                    OutT *result,
                                    int read_lens) {
615 616 617 618 619 620 621 622 623
    kps::ElementwiseUnary<InT, OutT, VecSize, 1, 1, Functor>(
        result, args[0], func);
  }
};

template <typename InT, typename OutT, int VecSize, typename Functor>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, 2, false> {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
624 625
                                    OutT *result,
                                    int read_lens) {
626
    kps::ElementwiseBinary<InT, OutT, VecSize, 1, 1, Functor>(
627
        result, args[0], args[1], func, read_lens);
628 629 630 631 632 633 634
  }
};

template <typename InT, typename OutT, int VecSize, typename Functor>
struct ElementwisePrimitiveCaller<InT, OutT, VecSize, Functor, 3, false> {
  __device__ inline void operator()(Functor func,
                                    InT (*args)[VecSize],
635 636
                                    OutT *result,
                                    int read_lens) {
637 638 639 640 641
    kps::ElementwiseTernary<InT, OutT, VecSize, 1, 1, Functor>(
        result, args[0], args[1], args[2], func);
  }
};

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
namespace detail {
template <class F, class Tuple, std::size_t... Index>
// GCC/Clang need the decltype() return type
HOSTDEVICE constexpr decltype(auto) ApplyImpl(F &&f,
                                              Tuple &&t,
                                              std::index_sequence<Index...>) {
  return std::forward<F>(f)(std::get<Index>(std::forward<Tuple>(t))...);
}
}  // namespace detail

template <class F, class Tuple>
HOSTDEVICE constexpr decltype(auto) Apply(F &&f, Tuple &&t) {
  return detail::ApplyImpl(
      std::forward<F>(f),
      std::forward<Tuple>(t),
      std::make_index_sequence<
          std::tuple_size<std::remove_reference_t<Tuple>>::value>{});
}

template <typename OutT,
          int VecSize,
          typename Functor,
          typename ArgsT,
          int Arity>
struct SameDimsElementwisePrimitiveCaller {
667 668 669 670 671 672 673 674 675
  __device__ inline void operator()(Functor func,
                                    ArgsT *args,
                                    OutT *result,
                                    int read_lens) {
#ifdef PADDLE_WITH_XPU_KP
    for (int idx = 0; idx < read_lens; ++idx) {
      result[idx] = static_cast<OutT>(Apply(func, args[idx]));
    }
#else
676 677 678 679
#pragma unroll
    for (int idx = 0; idx < VecSize; ++idx) {
      result[idx] = static_cast<OutT>(Apply(func, args[idx]));
    }
680
#endif
681 682 683
  }
};

684 685 686 687 688
template <typename OutT, int VecSize, bool IsBoundary, int NumOuts>
struct ElementwiseWriteDataCallerBc {
  __device__ __forceinline__ void operator()(
      phi::Array<_ptr_ OutT *, NumOuts> outs,
      ConditionalT<OutT, NumOuts> src[VecSize],
689
      kps::IndexType block_offset,
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
      int num,
      int read_lens) {
    OutT dst[NumOuts][VecSize];
#pragma unroll
    for (int i = 0; i < read_lens; ++i) {
#pragma unroll
      for (int j = 0; j < NumOuts; ++j) {
        dst[j][i] = (src[i])[j];
      }
    }
#pragma unroll
    for (int i = 0; i < NumOuts; ++i) {
      kps::WriteData<OutT, VecSize, 1, 1, IsBoundary>(
          outs[i] + block_offset, dst[i], num, read_lens);
    }
  }
};

template <typename OutT, int VecSize, bool IsBoundary>
struct ElementwiseWriteDataCallerBc<OutT, VecSize, IsBoundary, 1> {
  __device__ __forceinline__ void operator()(phi::Array<_ptr_ OutT *, 1> outs,
                                             OutT src[VecSize],
712
                                             kps::IndexType block_offset,
713 714 715 716 717 718 719
                                             int num,
                                             int read_lens) {
    kps::WriteData<OutT, VecSize, 1, 1, IsBoundary>(
        outs[0] + block_offset, src, num, read_lens);
  }
};

720
template <typename OutT,
721 722 723 724 725 726
          typename Functor,
          int Arity,
          int NumOuts,
          int VecSize,
          bool IsBoundary>
__device__ void VectorizedElementwiseKernelImpl(
727 728
    const phi::Array<const _ptr_ char *__restrict__, Arity> &in,
    phi::Array<_ptr_ OutT *, NumOuts> outs,
729
    kps::IndexType offset,
730
    int num,
731
    int read_lens,
732
    Functor func) {
733 734 735
  using Traits = paddle::platform::FunctionTraits<Functor>;
  using ArgsT = typename Traits::ArgsTuple;
  ArgsT args[VecSize];
736 737
  ConditionalT<OutT, NumOuts> result[VecSize];

738
  Unroller<Loader, VecSize, Arity>::step(
739
      in, args, offset, num, read_lens, IsBoundary);
740

741 742 743 744
  SameDimsElementwisePrimitiveCaller<ConditionalT<OutT, NumOuts>,
                                     VecSize,
                                     Functor,
                                     ArgsT,
745
                                     Arity>()(func, args, result, read_lens);
746

747
  ElementwiseWriteDataCallerBc<OutT, VecSize, IsBoundary, NumOuts>()(
748
      outs, result, offset, num, read_lens);
749 750
}

751
template <typename OutT, typename Functor, int Arity, int NumOuts, int VecSize>
752
__global__ void VectorizedElementwiseKernel(
753 754
    phi::Array<const _ptr_ char *__restrict__, Arity> ins,
    phi::Array<_ptr_ OutT *, NumOuts> outs,
755 756
    kps::IndexType numel,
    kps::IndexType main_offset,
757
    int read_lens,
758
    Functor func) {
759 760
  kps::IndexType data_offset = BLOCK_ID_X * BLOCK_NUM_X * read_lens;
  kps::IndexType stride = BLOCK_NUM_X * GRID_NUM_X * read_lens;
761
  for (; data_offset < main_offset; data_offset += stride) {
762
    VectorizedElementwiseKernelImpl<OutT,
763 764 765 766 767
                                    Functor,
                                    Arity,
                                    NumOuts,
                                    VecSize,
                                    false>(
768
        ins, outs, data_offset, read_lens * BLOCK_NUM_X, read_lens, func);
769 770
  }

771
  kps::IndexType remain = numel - data_offset;
772
  if (remain > 0) {
773
    VectorizedElementwiseKernelImpl<OutT,
774 775 776 777
                                    Functor,
                                    Arity,
                                    NumOuts,
                                    VecSize,
778
                                    true>(
779
        ins, outs, data_offset, static_cast<int>(remain), read_lens, func);
780 781 782
  }
}

783
template <typename OutT, typename Functor, int Arity, int NumOuts, int VecSize>
784 785 786 787 788 789 790 791 792
void LaunchElementwiseCudaKernel(const KPDevice &ctx,
                                 const std::vector<const DenseTensor *> &ins,
                                 std::vector<DenseTensor *> *outs,
                                 int read_lens,
                                 Functor func) {
  // There are at least 1 output, but maybe 0 input (ins.size() == 0).
  // For large tensor numel * sizeof(T) > 2^31, we must use int64_t as index
  // type.
  int64_t numel = (*outs)[0]->numel();
793 794
  phi::Array<const _ptr_ char *__restrict__, Arity> ins_data;
  phi::Array<_ptr_ OutT *, NumOuts> outs_data;
795

796
  Unroller<InputSetter, VecSize, Arity>::step(ins, &ins_data);
797
  for (int i = 0; i < NumOuts; ++i) {
798
    outs_data[i] = (_ptr_ OutT *)(ctx.Alloc<OutT>((*outs)[i]));
799
  }
800
#ifdef PADDLE_WITH_XPU_KP
801 802 803
  int block_size = 64;
  int grid_size = 8;
  auto stream = ctx.x_context()->xpu_stream;
804 805
  int64_t main_offset =
      (numel / (read_lens * block_size)) * read_lens * block_size;
806 807
  VectorizedElementwiseKernel<OutT, Functor, Arity, NumOuts, VecSize>
      <<<grid_size, block_size, 0, stream>>>(
808
          ins_data, outs_data, numel, main_offset, read_lens, func);
809
#else
W
Wilber 已提交
810
  auto gpu_config =
811
      phi::backends::gpu::GetGpuLaunchConfig1D(ctx, numel, VecSize);
812 813
  int64_t main_offset = (numel / (VecSize * gpu_config.GetBlockSize())) *
                        VecSize * gpu_config.GetBlockSize();
814
  auto stream = ctx.stream();
815 816
  VectorizedElementwiseKernel<OutT, Functor, Arity, NumOuts, VecSize>
      <<<gpu_config.block_per_grid, gpu_config.thread_per_block, 0, stream>>>(
817
          ins_data, outs_data, numel, main_offset, VecSize, func);
818 819 820
#endif
}

821
template <typename OutT, typename Functor, int NumOuts = 1>
822 823 824 825
void ElementwiseKernel(const KPDevice &ctx,
                       const std::vector<const DenseTensor *> &ins,
                       std::vector<DenseTensor *> *outs,
                       Functor func) {
826
  using Traits = paddle::platform::FunctionTraits<Functor>;
827
  const int kArity = Traits::arity;
828 829
  PADDLE_ENFORCE_EQ(ins.size(),
                    kArity,
830
                    phi::errors::InvalidArgument(
831
                        "The number of inputs is expected to be equal to the "
832
                        "arity of functor. But received: the number of inputs "
833 834 835 836 837
                        "is %d, the arity of functor is %d.",
                        ins.size(),
                        kArity));
  PADDLE_ENFORCE_EQ(outs->size(),
                    NumOuts,
838
                    phi::errors::InvalidArgument(
839 840 841 842 843 844 845 846 847 848
                        "Number of outputs shall equal to number of functions, "
                        "but number of outputs is %d, of functions is %d.",
                        outs->size(),
                        NumOuts));

  if (NumOuts > 1) {
    for (int i = 1; i < NumOuts; ++i) {
      PADDLE_ENFORCE_EQ(
          (*outs)[i]->dims(),
          (*outs)[0]->dims(),
849
          phi::errors::InvalidArgument(
850 851 852 853 854 855
              "The shape of each output tensor shall be identical yet, "
              "but %dth output tensor`s shape is not.",
              i));
    }
  }

856 857 858 859 860 861 862 863 864 865
#ifdef PADDLE_WITH_XPU_KP
  const int buf_size = 256;
  int numel = (*outs)[0]->numel();
  int block_size = 64;
  int grid_size = 8;
  int nthreads = block_size * grid_size;
  int read_lens =
      std::min(buf_size, kps::details::RoundUpDiv(numel, 32 * nthreads) * 32);
  int vec_size = buf_size;
#else
866
  // calculate the max vec_size for all ins and outs
867
  int vec_size = GetVectorizedSizeForTensors<OutT, Functor>(ins, *outs);
868 869
  int read_lens = vec_size;
#endif
870
  switch (vec_size) {
871
    case VecSizeL:
872
      LaunchElementwiseCudaKernel<OutT, Functor, kArity, NumOuts, VecSizeL>(
873
          ctx, ins, outs, read_lens, func);
874
      break;
875
    case VecSizeM:
876
      LaunchElementwiseCudaKernel<OutT, Functor, kArity, NumOuts, VecSizeM>(
877
          ctx, ins, outs, read_lens, func);
878
      break;
879
    case VecSizeS:
880
      LaunchElementwiseCudaKernel<OutT, Functor, kArity, NumOuts, VecSizeS>(
881
          ctx, ins, outs, read_lens, func);
882 883
      break;
    default: {
884
      PADDLE_THROW(phi::errors::Unimplemented(
885 886 887 888 889
          "Unsupported vectorized size: %d !", vec_size));
      break;
    }
  }
}
890

891 892
#endif

893
}  // namespace funcs
894
}  // namespace phi