Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
a1980d9c
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a1980d9c
编写于
1月 18, 2022
作者:
Y
YuanRisheng
提交者:
GitHub
1月 18, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
break the circular dependency between reduce and elementwise (#38951)
上级
30845734
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
393 addition
and
381 deletion
+393
-381
paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h
paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h
+3
-2
paddle/pten/infermeta/binary.cc
paddle/pten/infermeta/binary.cc
+1
-1
paddle/pten/kernels/cpu/elementwise.h
paddle/pten/kernels/cpu/elementwise.h
+1
-0
paddle/pten/kernels/funcs/common_shape.h
paddle/pten/kernels/funcs/common_shape.h
+61
-2
paddle/pten/kernels/funcs/cuda_kernel_config.h
paddle/pten/kernels/funcs/cuda_kernel_config.h
+1
-0
paddle/pten/kernels/funcs/elementwise_base.h
paddle/pten/kernels/funcs/elementwise_base.h
+305
-60
paddle/pten/kernels/gpu/cast_kernel.cu
paddle/pten/kernels/gpu/cast_kernel.cu
+4
-2
paddle/pten/kernels/gpu/elementwise.h
paddle/pten/kernels/gpu/elementwise.h
+13
-310
paddle/pten/kernels/gpu/reduce.h
paddle/pten/kernels/gpu/reduce.h
+2
-2
paddle/pten/kernels/gpu/scale_kernel.cu
paddle/pten/kernels/gpu/scale_kernel.cu
+2
-2
未找到文件。
paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h
浏览文件 @
a1980d9c
...
...
@@ -59,8 +59,9 @@ void LaunchSameDimsElementwiseCudaKernel(
for
(
int
i
=
0
;
i
<
pt_outputs_tmp
.
size
();
i
++
)
{
pt_outputs
.
push_back
(
pt_outputs_tmp
[
i
].
get
());
}
pten
::
LaunchSameDimsElementwiseCudaKernel
<
ET
,
InT
,
OutT
,
Functor
,
NumOuts
>
(
ctx
,
pt_inputs
,
&
pt_outputs
,
func
);
pten
::
funcs
::
LaunchSameDimsElementwiseCudaKernel
<
ET
,
InT
,
OutT
,
Functor
,
NumOuts
>
(
ctx
,
pt_inputs
,
&
pt_outputs
,
func
);
}
}
// namespace operators
...
...
paddle/pten/infermeta/binary.cc
浏览文件 @
a1980d9c
...
...
@@ -14,7 +14,7 @@ limitations under the License. */
// See Note [ Why still include the fluid headers? ]
#include "paddle/pten/infermeta/binary.h"
#include "paddle/pten/kernels/funcs/
elementwise_bas
e.h"
#include "paddle/pten/kernels/funcs/
common_shap
e.h"
namespace
pten
{
...
...
paddle/pten/kernels/cpu/elementwise.h
浏览文件 @
a1980d9c
...
...
@@ -16,6 +16,7 @@ limitations under the License. */
#include "paddle/pten/backends/cpu/cpu_context.h"
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/kernels/funcs/common_shape.h"
#include "paddle/pten/kernels/funcs/elementwise_base.h"
#include "paddle/fluid/operators/math/blas.h"
...
...
paddle/pten/kernels/funcs/common_shape.h
浏览文件 @
a1980d9c
...
...
@@ -19,8 +19,8 @@ limitations under the License. */
namespace
pten
{
namespace
funcs
{
inline
void
SetXShape
(
const
DenseTensor
&
x
,
DenseTensor
*
xshape
)
{
const
auto
&
in_dims
=
x
.
meta
().
dims
;
inline
void
SetXShape
(
const
DenseTensor
&
x
,
DenseTensor
*
xshape
)
{
const
auto
&
in_dims
=
x
.
meta
().
dims
;
std
::
vector
<
int64_t
>
xshape_dims
(
in_dims
.
size
()
+
1
);
xshape_dims
[
0
]
=
0
;
for
(
int
i
=
0
;
i
<
in_dims
.
size
();
++
i
)
{
...
...
@@ -30,5 +30,64 @@ inline void SetXShape(const DenseTensor& x, DenseTensor* xshape) {
xshape
->
ResetLoD
(
x
.
meta
().
lod
);
}
inline
void
GetBroadcastDimsArrays
(
const
DDim
&
x_dims
,
const
DDim
&
y_dims
,
int
*
x_dims_array
,
int
*
y_dims_array
,
int
*
out_dims_array
,
const
int
max_dim
,
const
int
axis
)
{
PADDLE_ENFORCE_GE
(
axis
,
0
,
paddle
::
platform
::
errors
::
InvalidArgument
(
"Axis should be great than or equal to 0, but received axis is %d."
,
axis
));
PADDLE_ENFORCE_LT
(
axis
,
max_dim
,
paddle
::
platform
::
errors
::
InvalidArgument
(
"Axis should be less than %d, but received axis is %d."
,
max_dim
,
axis
));
if
(
x_dims
.
size
()
>
y_dims
.
size
())
{
std
::
fill
(
y_dims_array
,
y_dims_array
+
axis
,
1
);
if
(
axis
+
y_dims
.
size
()
<
max_dim
)
{
std
::
fill
(
y_dims_array
+
axis
+
y_dims
.
size
(),
y_dims_array
+
max_dim
,
1
);
}
std
::
copy
(
x_dims
.
Get
(),
x_dims
.
Get
()
+
x_dims
.
size
(),
x_dims_array
);
std
::
copy
(
y_dims
.
Get
(),
y_dims
.
Get
()
+
y_dims
.
size
(),
y_dims_array
+
axis
);
}
else
{
std
::
fill
(
x_dims_array
,
x_dims_array
+
axis
,
1
);
if
(
axis
+
x_dims
.
size
()
<
max_dim
)
{
std
::
fill
(
x_dims_array
+
axis
+
x_dims
.
size
(),
x_dims_array
+
max_dim
,
1
);
}
std
::
copy
(
x_dims
.
Get
(),
x_dims
.
Get
()
+
x_dims
.
size
(),
x_dims_array
+
axis
);
std
::
copy
(
y_dims
.
Get
(),
y_dims
.
Get
()
+
y_dims
.
size
(),
y_dims_array
);
}
for
(
int
i
=
0
;
i
<
max_dim
;
i
++
)
{
PADDLE_ENFORCE_EQ
(
x_dims_array
[
i
]
==
y_dims_array
[
i
]
||
x_dims_array
[
i
]
<=
1
||
y_dims_array
[
i
]
<=
1
,
true
,
paddle
::
platform
::
errors
::
InvalidArgument
(
"Broadcast dimension mismatch. Operands could "
"not be broadcast together with the shape of X = [%s] and "
"the shape of Y = [%s]. Received [%d] in X is not equal to "
"[%d] in Y at i:%d."
,
x_dims
,
y_dims
,
x_dims_array
[
i
],
y_dims_array
[
i
],
i
));
if
((
x_dims_array
[
i
]
>
1
||
y_dims_array
[
i
]
>
1
)
||
(
x_dims_array
[
i
]
==
1
&&
y_dims_array
[
i
]
==
1
))
{
out_dims_array
[
i
]
=
(
std
::
max
)(
x_dims_array
[
i
],
y_dims_array
[
i
]);
}
else
{
out_dims_array
[
i
]
=
-
1
;
}
}
}
}
// namespace funcs
}
// namespace pten
paddle/pten/kernels/funcs/cuda_kernel_config.h
浏览文件 @
a1980d9c
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_launch_config.h"
#ifdef __HIPCC__
#define ELEMENTWISE_BLOCK_SIZE 256
...
...
paddle/pten/kernels/funcs/elementwise_base.h
浏览文件 @
a1980d9c
...
...
@@ -19,9 +19,26 @@ limitations under the License. */
#include "paddle/pten/backends/all_context.h"
#include "paddle/pten/core/dense_tensor.h"
#if defined(__NVCC__) || defined(__HIPCC__)
#include "paddle/fluid/operators/kernel_primitives/kernel_primitives.h"
#include "paddle/fluid/platform/aligned_vector.h"
#include "paddle/fluid/platform/device/gpu/gpu_launch_config.h"
#include "paddle/fluid/platform/function_traits.h"
namespace
kps
=
paddle
::
operators
::
kernel_primitives
;
#endif
namespace
pten
{
namespace
funcs
{
enum
ElementwiseType
{
kUnary
=
1
,
kBinary
=
2
,
kTernary
=
3
,
kAny
=
-
1
};
/* Packing scalar type T(float, int etc.) into Array<T, NumOuts> type
for supporting multiple-output feature in elementwise system.*/
template
<
class
T
,
int
Num
>
using
ConditionalT
=
typename
std
::
conditional_t
<
Num
==
1
,
T
,
paddle
::
framework
::
Array
<
T
,
Num
>>
;
namespace
funcs
{
using
DDim
=
paddle
::
framework
::
DDim
;
template
<
typename
T
,
typename
DX_OP
,
typename
DY_OP
,
typename
Tout
=
T
>
...
...
@@ -343,65 +360,6 @@ inline void get_mid_dims(const DDim &x_dims,
}
}
inline
void
GetBroadcastDimsArrays
(
const
DDim
&
x_dims
,
const
DDim
&
y_dims
,
int
*
x_dims_array
,
int
*
y_dims_array
,
int
*
out_dims_array
,
const
int
max_dim
,
const
int
axis
)
{
PADDLE_ENFORCE_GE
(
axis
,
0
,
paddle
::
platform
::
errors
::
InvalidArgument
(
"Axis should be great than or equal to 0, but received axis is %d."
,
axis
));
PADDLE_ENFORCE_LT
(
axis
,
max_dim
,
paddle
::
platform
::
errors
::
InvalidArgument
(
"Axis should be less than %d, but received axis is %d."
,
max_dim
,
axis
));
if
(
x_dims
.
size
()
>
y_dims
.
size
())
{
std
::
fill
(
y_dims_array
,
y_dims_array
+
axis
,
1
);
if
(
axis
+
y_dims
.
size
()
<
max_dim
)
{
std
::
fill
(
y_dims_array
+
axis
+
y_dims
.
size
(),
y_dims_array
+
max_dim
,
1
);
}
std
::
copy
(
x_dims
.
Get
(),
x_dims
.
Get
()
+
x_dims
.
size
(),
x_dims_array
);
std
::
copy
(
y_dims
.
Get
(),
y_dims
.
Get
()
+
y_dims
.
size
(),
y_dims_array
+
axis
);
}
else
{
std
::
fill
(
x_dims_array
,
x_dims_array
+
axis
,
1
);
if
(
axis
+
x_dims
.
size
()
<
max_dim
)
{
std
::
fill
(
x_dims_array
+
axis
+
x_dims
.
size
(),
x_dims_array
+
max_dim
,
1
);
}
std
::
copy
(
x_dims
.
Get
(),
x_dims
.
Get
()
+
x_dims
.
size
(),
x_dims_array
+
axis
);
std
::
copy
(
y_dims
.
Get
(),
y_dims
.
Get
()
+
y_dims
.
size
(),
y_dims_array
);
}
for
(
int
i
=
0
;
i
<
max_dim
;
i
++
)
{
PADDLE_ENFORCE_EQ
(
x_dims_array
[
i
]
==
y_dims_array
[
i
]
||
x_dims_array
[
i
]
<=
1
||
y_dims_array
[
i
]
<=
1
,
true
,
paddle
::
platform
::
errors
::
InvalidArgument
(
"Broadcast dimension mismatch. Operands could "
"not be broadcast together with the shape of X = [%s] and "
"the shape of Y = [%s]. Received [%d] in X is not equal to "
"[%d] in Y at i:%d."
,
x_dims
,
y_dims
,
x_dims_array
[
i
],
y_dims_array
[
i
],
i
));
if
((
x_dims_array
[
i
]
>
1
||
y_dims_array
[
i
]
>
1
)
||
(
x_dims_array
[
i
]
==
1
&&
y_dims_array
[
i
]
==
1
))
{
out_dims_array
[
i
]
=
(
std
::
max
)(
x_dims_array
[
i
],
y_dims_array
[
i
]);
}
else
{
out_dims_array
[
i
]
=
-
1
;
}
}
}
template
<
typename
DeviceContext
,
typename
T
,
typename
DX_OP
,
...
...
@@ -432,5 +390,292 @@ void ElemwiseGradComputeNoBroadcast(const DeviceContext &dev_ctx,
dy
==
nullptr
?
nullptr
:
dy
->
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
())});
}
#if defined(__NVCC__) || defined(__HIPCC__)
template
<
typename
InT
,
typename
OutT
>
int
GetVectorizedSizeForTensors
(
const
std
::
vector
<
const
DenseTensor
*>
&
ins
,
const
std
::
vector
<
DenseTensor
*>
&
outs
)
{
int
vec_size
=
4
;
for
(
auto
iter
=
ins
.
begin
();
iter
!=
ins
.
end
();
++
iter
)
{
vec_size
=
std
::
min
<
int
>
(
vec_size
,
paddle
::
platform
::
GetVectorizedSize
((
*
iter
)
->
data
<
InT
>
()));
}
for
(
auto
iter
=
outs
.
begin
();
iter
!=
outs
.
end
();
++
iter
)
{
vec_size
=
std
::
min
<
int
>
(
vec_size
,
paddle
::
platform
::
GetVectorizedSize
((
*
iter
)
->
data
<
OutT
>
()));
}
return
vec_size
;
}
template
<
typename
InT
,
typename
OutT
,
int
VecSize
,
typename
Functor
,
int
Arity
,
bool
CallElementwiseAny
=
false
>
struct
ElementwisePrimitiveCaller
{
__device__
inline
void
operator
()(
Functor
func
,
InT
(
*
args
)[
VecSize
],
OutT
*
result
);
};
template
<
typename
InT
,
typename
OutT
,
int
VecSize
,
typename
Functor
,
int
Arity
>
struct
ElementwisePrimitiveCaller
<
InT
,
OutT
,
VecSize
,
Functor
,
Arity
,
true
>
{
__device__
inline
void
operator
()(
Functor
func
,
InT
(
*
args
)[
VecSize
],
OutT
*
result
)
{
kps
::
ElementwiseAny
<
InT
,
OutT
,
VecSize
,
1
,
1
,
Arity
,
Functor
>
(
result
,
args
,
func
);
}
};
template
<
typename
InT
,
typename
OutT
,
int
VecSize
,
typename
Functor
>
struct
ElementwisePrimitiveCaller
<
InT
,
OutT
,
VecSize
,
Functor
,
1
,
false
>
{
__device__
inline
void
operator
()(
Functor
func
,
InT
(
*
args
)[
VecSize
],
OutT
*
result
)
{
kps
::
ElementwiseUnary
<
InT
,
OutT
,
VecSize
,
1
,
1
,
Functor
>
(
result
,
args
[
0
],
func
);
}
};
template
<
typename
InT
,
typename
OutT
,
int
VecSize
,
typename
Functor
>
struct
ElementwisePrimitiveCaller
<
InT
,
OutT
,
VecSize
,
Functor
,
2
,
false
>
{
__device__
inline
void
operator
()(
Functor
func
,
InT
(
*
args
)[
VecSize
],
OutT
*
result
)
{
kps
::
ElementwiseBinary
<
InT
,
OutT
,
VecSize
,
1
,
1
,
Functor
>
(
result
,
args
[
0
],
args
[
1
],
func
);
}
};
template
<
typename
InT
,
typename
OutT
,
int
VecSize
,
typename
Functor
>
struct
ElementwisePrimitiveCaller
<
InT
,
OutT
,
VecSize
,
Functor
,
3
,
false
>
{
__device__
inline
void
operator
()(
Functor
func
,
InT
(
*
args
)[
VecSize
],
OutT
*
result
)
{
kps
::
ElementwiseTernary
<
InT
,
OutT
,
VecSize
,
1
,
1
,
Functor
>
(
result
,
args
[
0
],
args
[
1
],
args
[
2
],
func
);
}
};
template
<
typename
OutT
,
int
VecSize
,
bool
IsBoundary
,
int
NumOuts
>
struct
ElementwiseWriteDataCaller
{
__device__
__forceinline__
void
operator
()(
paddle
::
framework
::
Array
<
_ptr_
OutT
*
,
NumOuts
>
outs
,
ConditionalT
<
OutT
,
NumOuts
>
src
[
VecSize
],
int
block_offset
,
int
num
)
{
OutT
dst
[
NumOuts
][
VecSize
];
#pragma unroll
for
(
int
i
=
0
;
i
<
VecSize
;
++
i
)
{
#pragma unroll
for
(
int
j
=
0
;
j
<
NumOuts
;
++
j
)
{
dst
[
j
][
i
]
=
(
src
[
i
])[
j
];
}
}
#pragma unroll
for
(
int
i
=
0
;
i
<
NumOuts
;
++
i
)
{
kps
::
WriteData
<
OutT
,
VecSize
,
1
,
1
,
IsBoundary
>
(
outs
[
i
]
+
block_offset
,
dst
[
i
],
num
);
}
}
};
template
<
typename
OutT
,
int
VecSize
,
bool
IsBoundary
>
struct
ElementwiseWriteDataCaller
<
OutT
,
VecSize
,
IsBoundary
,
1
>
{
__device__
__forceinline__
void
operator
()(
paddle
::
framework
::
Array
<
_ptr_
OutT
*
,
1
>
outs
,
OutT
src
[
VecSize
],
int
block_offset
,
int
num
)
{
kps
::
WriteData
<
OutT
,
VecSize
,
1
,
1
,
IsBoundary
>
(
outs
[
0
]
+
block_offset
,
src
,
num
);
}
};
template
<
typename
InT
,
typename
OutT
,
typename
Functor
,
int
Arity
,
int
NumOuts
,
int
VecSize
,
bool
IsBoundary
>
__device__
void
VectorizedElementwiseKernelImpl
(
const
paddle
::
framework
::
Array
<
const
_ptr_
InT
*
__restrict__
,
Arity
>
&
in
,
paddle
::
framework
::
Array
<
_ptr_
OutT
*
,
NumOuts
>
outs
,
int
num
,
int
data_offset
,
Functor
func
)
{
InT
args
[
Arity
][
VecSize
];
ConditionalT
<
OutT
,
NumOuts
>
result
[
VecSize
];
#pragma unroll
for
(
int
i
=
0
;
i
<
Arity
;
i
++
)
{
kps
::
Init
<
InT
,
VecSize
>
(
args
[
i
],
static_cast
<
InT
>
(
1.0
f
));
kps
::
ReadData
<
InT
,
VecSize
,
1
,
1
,
IsBoundary
>
(
args
[
i
],
in
[
i
]
+
data_offset
,
num
);
}
constexpr
bool
kCallElementwiseAny
=
paddle
::
platform
::
FunctionTraits
<
Functor
>::
has_pointer_args
;
ElementwisePrimitiveCaller
<
InT
,
ConditionalT
<
OutT
,
NumOuts
>
,
VecSize
,
Functor
,
Arity
,
kCallElementwiseAny
>
()(
func
,
args
,
result
);
ElementwiseWriteDataCaller
<
OutT
,
VecSize
,
IsBoundary
,
NumOuts
>
()(
outs
,
result
,
data_offset
,
num
);
}
template
<
typename
InT
,
typename
OutT
,
typename
Functor
,
int
Arity
,
int
NumOuts
,
int
VecSize
>
__global__
void
VectorizedElementwiseKernel
(
paddle
::
framework
::
Array
<
const
_ptr_
InT
*
__restrict__
,
Arity
>
ins
,
paddle
::
framework
::
Array
<
_ptr_
OutT
*
,
NumOuts
>
outs
,
int
size
,
int
main_offset
,
Functor
func
)
{
int
data_offset
=
BLOCK_ID_X
*
BLOCK_NUM_X
*
VecSize
;
int
stride
=
BLOCK_NUM_X
*
GRID_NUM_X
*
VecSize
;
for
(;
data_offset
<
main_offset
;
data_offset
+=
stride
)
{
VectorizedElementwiseKernelImpl
<
InT
,
OutT
,
Functor
,
Arity
,
NumOuts
,
VecSize
,
false
>
(
ins
,
outs
,
VecSize
*
BLOCK_NUM_X
,
data_offset
,
func
);
}
int
num
=
size
-
data_offset
;
if
(
num
>
0
)
{
VectorizedElementwiseKernelImpl
<
InT
,
OutT
,
Functor
,
Arity
,
NumOuts
,
VecSize
,
true
>
(
ins
,
outs
,
num
,
data_offset
,
func
);
}
}
template
<
typename
InT
,
typename
OutT
,
typename
Functor
,
int
Arity
,
int
NumOuts
,
int
VecSize
>
void
ElementwiseCudaKernel
(
const
KPDevice
&
ctx
,
const
std
::
vector
<
const
DenseTensor
*>
&
ins
,
std
::
vector
<
DenseTensor
*>
*
outs
,
Functor
func
)
{
auto
numel
=
ins
[
0
]
->
numel
();
paddle
::
framework
::
Array
<
const
_ptr_
InT
*
__restrict__
,
Arity
>
ins_data
;
paddle
::
framework
::
Array
<
_ptr_
OutT
*
,
NumOuts
>
outs_data
;
for
(
int
i
=
0
;
i
<
Arity
;
++
i
)
{
ins_data
[
i
]
=
ins
[
i
]
->
data
<
InT
>
();
}
for
(
int
i
=
0
;
i
<
NumOuts
;
++
i
)
{
outs_data
[
i
]
=
(
*
outs
)[
i
]
->
mutable_data
<
OutT
>
();
}
#ifdef PADDLE_WITH_XPU2
int
block_size
=
64
;
int
grid_size
=
8
;
auto
stream
=
ctx
.
x_context
()
->
xpu_stream
;
int
main_offset
=
(
numel
/
(
VecSize
*
block_size
))
*
VecSize
*
block_size
;
VectorizedElementwiseKernel
<
InT
,
OutT
,
Functor
,
Arity
,
NumOuts
,
VecSize
><<<
grid_size
,
block_size
,
0
,
stream
>>>
(
ins_data
,
outs_data
,
numel
,
main_offset
,
func
);
#else
auto
gpu_config
=
GetGpuLaunchConfig1D
(
ctx
,
numel
,
VecSize
);
int
main_offset
=
(
numel
/
(
VecSize
*
gpu_config
.
GetBlockSize
()))
*
VecSize
*
gpu_config
.
GetBlockSize
();
auto
stream
=
ctx
.
stream
();
VectorizedElementwiseKernel
<
InT
,
OutT
,
Functor
,
Arity
,
NumOuts
,
VecSize
><<<
gpu_config
.
block_per_grid
,
gpu_config
.
thread_per_block
,
0
,
stream
>>>
(
ins_data
,
outs_data
,
numel
,
main_offset
,
func
);
#endif
}
template
<
ElementwiseType
ET
,
typename
InT
,
typename
OutT
,
typename
Functor
,
int
NumOuts
=
1
>
void
LaunchSameDimsElementwiseCudaKernel
(
const
KPDevice
&
ctx
,
const
std
::
vector
<
const
DenseTensor
*>
&
ins
,
std
::
vector
<
DenseTensor
*>
*
outs
,
Functor
func
)
{
using
Traits
=
paddle
::
platform
::
FunctionTraits
<
Functor
>
;
const
int
kArity
=
Traits
::
has_pointer_args
?
static_cast
<
int
>
(
ET
)
:
Traits
::
arity
;
PADDLE_ENFORCE_EQ
(
ins
.
size
(),
kArity
,
paddle
::
platform
::
errors
::
InvalidArgument
(
"The number of inputs is expected to be equal to the "
"arity of functor. But recieved: the number of inputs "
"is %d, the arity of functor is %d."
,
ins
.
size
(),
kArity
));
PADDLE_ENFORCE_EQ
(
outs
->
size
(),
NumOuts
,
paddle
::
platform
::
errors
::
InvalidArgument
(
"Number of outputs shall equal to number of functions, "
"but number of outputs is %d, of functions is %d."
,
outs
->
size
(),
NumOuts
));
if
(
NumOuts
>
1
)
{
for
(
int
i
=
1
;
i
<
NumOuts
;
++
i
)
{
PADDLE_ENFORCE_EQ
(
(
*
outs
)[
i
]
->
dims
(),
(
*
outs
)[
0
]
->
dims
(),
paddle
::
platform
::
errors
::
InvalidArgument
(
"The shape of each output tensor shall be identical yet, "
"but %dth output tensor`s shape is not."
,
i
));
}
}
// calculate the max vec_size for all ins and outs
int
vec_size
=
GetVectorizedSizeForTensors
<
InT
,
OutT
>
(
ins
,
*
outs
);
switch
(
vec_size
)
{
case
4
:
ElementwiseCudaKernel
<
InT
,
OutT
,
Functor
,
kArity
,
NumOuts
,
4
>
(
ctx
,
ins
,
outs
,
func
);
break
;
case
2
:
ElementwiseCudaKernel
<
InT
,
OutT
,
Functor
,
kArity
,
NumOuts
,
2
>
(
ctx
,
ins
,
outs
,
func
);
break
;
case
1
:
ElementwiseCudaKernel
<
InT
,
OutT
,
Functor
,
kArity
,
NumOuts
,
1
>
(
ctx
,
ins
,
outs
,
func
);
break
;
default:
{
PADDLE_THROW
(
paddle
::
platform
::
errors
::
Unimplemented
(
"Unsupported vectorized size: %d !"
,
vec_size
));
break
;
}
}
}
#endif
}
// namespace funcs
}
// namespace pten
paddle/pten/kernels/gpu/cast_kernel.cu
浏览文件 @
a1980d9c
...
...
@@ -17,9 +17,9 @@
#include "paddle/pten/api/ext/dispatch.h"
#include "paddle/pten/backends/gpu/gpu_context.h"
#include "paddle/pten/core/kernel_registry.h"
#include "paddle/pten/kernels/funcs/elementwise_base.h"
// See Note [ Why still include the fluid headers? ]
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
#include "paddle/fluid/platform/aligned_vector.h"
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/device/gpu/gpu_helper.h"
...
...
@@ -44,7 +44,9 @@ void CastCUDAKernelImpl(const GPUContext& dev_ctx,
inputs
.
emplace_back
(
&
x
);
outputs
.
emplace_back
(
out
);
out
->
mutable_data
<
OutT
>
();
LaunchSameDimsElementwiseCudaKernel
<
ElementwiseType
::
kUnary
,
InT
,
OutT
>
(
funcs
::
LaunchSameDimsElementwiseCudaKernel
<
ElementwiseType
::
kUnary
,
InT
,
OutT
>
(
dev_ctx
,
inputs
,
&
outputs
,
CastFuctor
<
InT
,
OutT
>
());
}
...
...
paddle/pten/kernels/gpu/elementwise.h
浏览文件 @
a1980d9c
...
...
@@ -14,12 +14,7 @@ limitations under the License. */
#pragma once
#include "paddle/fluid/operators/kernel_primitives/kernel_primitives.h"
#include "paddle/fluid/platform/aligned_vector.h"
#include "paddle/fluid/platform/device/gpu/gpu_launch_config.h"
#include "paddle/fluid/platform/function_traits.h"
#include "paddle/pten/backends/gpu/gpu_context.h"
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/kernels/funcs/common_shape.h"
#include "paddle/pten/kernels/funcs/cuda_kernel_config.h"
#include "paddle/pten/kernels/funcs/elementwise_base.h"
...
...
@@ -39,301 +34,7 @@ constexpr int ELEMWISE_MAX_BLOCK_DIM = 1024;
} while (0)
namespace
pten
{
namespace
kps
=
paddle
::
operators
::
kernel_primitives
;
enum
ElementwiseType
{
kUnary
=
1
,
kBinary
=
2
,
kTernary
=
3
,
kAny
=
-
1
};
/* Packing scalar type T(float, int etc.) into Array<T, NumOuts> type
for supporting multiple-output feature in elementwise system.*/
template
<
class
T
,
int
Num
>
using
ConditionalT
=
typename
std
::
conditional_t
<
Num
==
1
,
T
,
paddle
::
framework
::
Array
<
T
,
Num
>>
;
// FORWARD CODE
template
<
typename
InT
,
typename
OutT
,
int
VecSize
,
typename
Functor
,
int
Arity
,
bool
CallElementwiseAny
=
false
>
struct
ElementwisePrimitiveCaller
{
__device__
inline
void
operator
()(
Functor
func
,
InT
(
*
args
)[
VecSize
],
OutT
*
result
);
};
template
<
typename
InT
,
typename
OutT
,
int
VecSize
,
typename
Functor
,
int
Arity
>
struct
ElementwisePrimitiveCaller
<
InT
,
OutT
,
VecSize
,
Functor
,
Arity
,
true
>
{
__device__
inline
void
operator
()(
Functor
func
,
InT
(
*
args
)[
VecSize
],
OutT
*
result
)
{
kps
::
ElementwiseAny
<
InT
,
OutT
,
VecSize
,
1
,
1
,
Arity
,
Functor
>
(
result
,
args
,
func
);
}
};
template
<
typename
InT
,
typename
OutT
,
int
VecSize
,
typename
Functor
>
struct
ElementwisePrimitiveCaller
<
InT
,
OutT
,
VecSize
,
Functor
,
1
,
false
>
{
__device__
inline
void
operator
()(
Functor
func
,
InT
(
*
args
)[
VecSize
],
OutT
*
result
)
{
kps
::
ElementwiseUnary
<
InT
,
OutT
,
VecSize
,
1
,
1
,
Functor
>
(
result
,
args
[
0
],
func
);
}
};
template
<
typename
InT
,
typename
OutT
,
int
VecSize
,
typename
Functor
>
struct
ElementwisePrimitiveCaller
<
InT
,
OutT
,
VecSize
,
Functor
,
2
,
false
>
{
__device__
inline
void
operator
()(
Functor
func
,
InT
(
*
args
)[
VecSize
],
OutT
*
result
)
{
kps
::
ElementwiseBinary
<
InT
,
OutT
,
VecSize
,
1
,
1
,
Functor
>
(
result
,
args
[
0
],
args
[
1
],
func
);
}
};
template
<
typename
InT
,
typename
OutT
,
int
VecSize
,
typename
Functor
>
struct
ElementwisePrimitiveCaller
<
InT
,
OutT
,
VecSize
,
Functor
,
3
,
false
>
{
__device__
inline
void
operator
()(
Functor
func
,
InT
(
*
args
)[
VecSize
],
OutT
*
result
)
{
kps
::
ElementwiseTernary
<
InT
,
OutT
,
VecSize
,
1
,
1
,
Functor
>
(
result
,
args
[
0
],
args
[
1
],
args
[
2
],
func
);
}
};
template
<
typename
OutT
,
int
VecSize
,
bool
IsBoundary
,
int
NumOuts
>
struct
ElementwiseWriteDataCaller
{
__device__
__forceinline__
void
operator
()(
paddle
::
framework
::
Array
<
_ptr_
OutT
*
,
NumOuts
>
outs
,
ConditionalT
<
OutT
,
NumOuts
>
src
[
VecSize
],
int
block_offset
,
int
num
)
{
OutT
dst
[
NumOuts
][
VecSize
];
#pragma unroll
for
(
int
i
=
0
;
i
<
VecSize
;
++
i
)
{
#pragma unroll
for
(
int
j
=
0
;
j
<
NumOuts
;
++
j
)
{
dst
[
j
][
i
]
=
(
src
[
i
])[
j
];
}
}
#pragma unroll
for
(
int
i
=
0
;
i
<
NumOuts
;
++
i
)
{
kps
::
WriteData
<
OutT
,
VecSize
,
1
,
1
,
IsBoundary
>
(
outs
[
i
]
+
block_offset
,
dst
[
i
],
num
);
}
}
};
template
<
typename
OutT
,
int
VecSize
,
bool
IsBoundary
>
struct
ElementwiseWriteDataCaller
<
OutT
,
VecSize
,
IsBoundary
,
1
>
{
__device__
__forceinline__
void
operator
()(
paddle
::
framework
::
Array
<
_ptr_
OutT
*
,
1
>
outs
,
OutT
src
[
VecSize
],
int
block_offset
,
int
num
)
{
kps
::
WriteData
<
OutT
,
VecSize
,
1
,
1
,
IsBoundary
>
(
outs
[
0
]
+
block_offset
,
src
,
num
);
}
};
template
<
typename
InT
,
typename
OutT
,
typename
Functor
,
int
Arity
,
int
NumOuts
,
int
VecSize
,
bool
IsBoundary
>
__device__
void
VectorizedElementwiseKernelImpl
(
const
paddle
::
framework
::
Array
<
const
_ptr_
InT
*
__restrict__
,
Arity
>
&
in
,
paddle
::
framework
::
Array
<
_ptr_
OutT
*
,
NumOuts
>
outs
,
int
num
,
int
data_offset
,
Functor
func
)
{
InT
args
[
Arity
][
VecSize
];
ConditionalT
<
OutT
,
NumOuts
>
result
[
VecSize
];
#pragma unroll
for
(
int
i
=
0
;
i
<
Arity
;
i
++
)
{
kps
::
Init
<
InT
,
VecSize
>
(
args
[
i
],
static_cast
<
InT
>
(
1.0
f
));
kps
::
ReadData
<
InT
,
VecSize
,
1
,
1
,
IsBoundary
>
(
args
[
i
],
in
[
i
]
+
data_offset
,
num
);
}
constexpr
bool
kCallElementwiseAny
=
paddle
::
platform
::
FunctionTraits
<
Functor
>::
has_pointer_args
;
ElementwisePrimitiveCaller
<
InT
,
ConditionalT
<
OutT
,
NumOuts
>
,
VecSize
,
Functor
,
Arity
,
kCallElementwiseAny
>
()(
func
,
args
,
result
);
ElementwiseWriteDataCaller
<
OutT
,
VecSize
,
IsBoundary
,
NumOuts
>
()(
outs
,
result
,
data_offset
,
num
);
}
template
<
typename
InT
,
typename
OutT
,
typename
Functor
,
int
Arity
,
int
NumOuts
,
int
VecSize
>
__global__
void
VectorizedElementwiseKernel
(
paddle
::
framework
::
Array
<
const
_ptr_
InT
*
__restrict__
,
Arity
>
ins
,
paddle
::
framework
::
Array
<
_ptr_
OutT
*
,
NumOuts
>
outs
,
int
size
,
int
main_offset
,
Functor
func
)
{
int
data_offset
=
BLOCK_ID_X
*
BLOCK_NUM_X
*
VecSize
;
int
stride
=
BLOCK_NUM_X
*
GRID_NUM_X
*
VecSize
;
for
(;
data_offset
<
main_offset
;
data_offset
+=
stride
)
{
VectorizedElementwiseKernelImpl
<
InT
,
OutT
,
Functor
,
Arity
,
NumOuts
,
VecSize
,
false
>
(
ins
,
outs
,
VecSize
*
BLOCK_NUM_X
,
data_offset
,
func
);
}
int
num
=
size
-
data_offset
;
if
(
num
>
0
)
{
VectorizedElementwiseKernelImpl
<
InT
,
OutT
,
Functor
,
Arity
,
NumOuts
,
VecSize
,
true
>
(
ins
,
outs
,
num
,
data_offset
,
func
);
}
}
template
<
typename
InT
,
typename
OutT
>
int
GetVectorizedSizeForTensors
(
const
std
::
vector
<
const
DenseTensor
*>
&
ins
,
const
std
::
vector
<
DenseTensor
*>
&
outs
)
{
int
vec_size
=
4
;
for
(
auto
iter
=
ins
.
begin
();
iter
!=
ins
.
end
();
++
iter
)
{
vec_size
=
std
::
min
<
int
>
(
vec_size
,
paddle
::
platform
::
GetVectorizedSize
((
*
iter
)
->
data
<
InT
>
()));
}
for
(
auto
iter
=
outs
.
begin
();
iter
!=
outs
.
end
();
++
iter
)
{
vec_size
=
std
::
min
<
int
>
(
vec_size
,
paddle
::
platform
::
GetVectorizedSize
((
*
iter
)
->
data
<
OutT
>
()));
}
return
vec_size
;
}
template
<
typename
InT
,
typename
OutT
,
typename
Functor
,
int
Arity
,
int
NumOuts
,
int
VecSize
>
void
ElementwiseCudaKernel
(
const
KPDevice
&
ctx
,
const
std
::
vector
<
const
DenseTensor
*>
&
ins
,
std
::
vector
<
DenseTensor
*>
*
outs
,
Functor
func
)
{
auto
numel
=
ins
[
0
]
->
numel
();
paddle
::
framework
::
Array
<
const
_ptr_
InT
*
__restrict__
,
Arity
>
ins_data
;
paddle
::
framework
::
Array
<
_ptr_
OutT
*
,
NumOuts
>
outs_data
;
for
(
int
i
=
0
;
i
<
Arity
;
++
i
)
{
ins_data
[
i
]
=
ins
[
i
]
->
data
<
InT
>
();
}
for
(
int
i
=
0
;
i
<
NumOuts
;
++
i
)
{
outs_data
[
i
]
=
(
*
outs
)[
i
]
->
mutable_data
<
OutT
>
();
}
#ifdef PADDLE_WITH_XPU2
int
block_size
=
64
;
int
grid_size
=
8
;
auto
stream
=
ctx
.
x_context
()
->
xpu_stream
;
int
main_offset
=
(
numel
/
(
VecSize
*
block_size
))
*
VecSize
*
block_size
;
VectorizedElementwiseKernel
<
InT
,
OutT
,
Functor
,
Arity
,
NumOuts
,
VecSize
><<<
grid_size
,
block_size
,
0
,
stream
>>>
(
ins_data
,
outs_data
,
numel
,
main_offset
,
func
);
#else
auto
gpu_config
=
GetGpuLaunchConfig1D
(
ctx
,
numel
,
VecSize
);
int
main_offset
=
(
numel
/
(
VecSize
*
gpu_config
.
GetBlockSize
()))
*
VecSize
*
gpu_config
.
GetBlockSize
();
auto
stream
=
ctx
.
stream
();
VectorizedElementwiseKernel
<
InT
,
OutT
,
Functor
,
Arity
,
NumOuts
,
VecSize
><<<
gpu_config
.
block_per_grid
,
gpu_config
.
thread_per_block
,
0
,
stream
>>>
(
ins_data
,
outs_data
,
numel
,
main_offset
,
func
);
#endif
}
template
<
ElementwiseType
ET
,
typename
InT
,
typename
OutT
,
typename
Functor
,
int
NumOuts
=
1
>
void
LaunchSameDimsElementwiseCudaKernel
(
const
KPDevice
&
ctx
,
const
std
::
vector
<
const
DenseTensor
*>
&
ins
,
std
::
vector
<
DenseTensor
*>
*
outs
,
Functor
func
)
{
using
Traits
=
paddle
::
platform
::
FunctionTraits
<
Functor
>
;
const
int
kArity
=
Traits
::
has_pointer_args
?
static_cast
<
int
>
(
ET
)
:
Traits
::
arity
;
PADDLE_ENFORCE_EQ
(
ins
.
size
(),
kArity
,
paddle
::
platform
::
errors
::
InvalidArgument
(
"The number of inputs is expected to be equal to the "
"arity of functor. But recieved: the number of inputs "
"is %d, the arity of functor is %d."
,
ins
.
size
(),
kArity
));
PADDLE_ENFORCE_EQ
(
outs
->
size
(),
NumOuts
,
paddle
::
platform
::
errors
::
InvalidArgument
(
"Number of outputs shall equal to number of functions, "
"but number of outputs is %d, of functions is %d."
,
outs
->
size
(),
NumOuts
));
if
(
NumOuts
>
1
)
{
for
(
int
i
=
1
;
i
<
NumOuts
;
++
i
)
{
PADDLE_ENFORCE_EQ
(
(
*
outs
)[
i
]
->
dims
(),
(
*
outs
)[
0
]
->
dims
(),
paddle
::
platform
::
errors
::
InvalidArgument
(
"The shape of each output tensor shall be identical yet, "
"but %dth output tensor`s shape is not."
,
i
));
}
}
// calculate the max vec_size for all ins and outs
int
vec_size
=
GetVectorizedSizeForTensors
<
InT
,
OutT
>
(
ins
,
*
outs
);
switch
(
vec_size
)
{
case
4
:
ElementwiseCudaKernel
<
InT
,
OutT
,
Functor
,
kArity
,
NumOuts
,
4
>
(
ctx
,
ins
,
outs
,
func
);
break
;
case
2
:
ElementwiseCudaKernel
<
InT
,
OutT
,
Functor
,
kArity
,
NumOuts
,
2
>
(
ctx
,
ins
,
outs
,
func
);
break
;
case
1
:
ElementwiseCudaKernel
<
InT
,
OutT
,
Functor
,
kArity
,
NumOuts
,
1
>
(
ctx
,
ins
,
outs
,
func
);
break
;
default:
{
PADDLE_THROW
(
paddle
::
platform
::
errors
::
Unimplemented
(
"Unsupported vectorized size: %d !"
,
vec_size
));
break
;
}
}
}
struct
DimensionsTransform
{
using
DimVector
=
std
::
vector
<
int64_t
>
;
typedef
void
(
*
MergeFunctor
)(
...
...
@@ -538,14 +239,15 @@ __device__ void ElementwiseBroadcastKernelImpl(
}
constexpr
bool
kCallElementwiseAny
=
paddle
::
platform
::
FunctionTraits
<
Functor
>::
has_pointer_args
;
ElementwisePrimitiveCaller
<
InT
,
ConditionalT
<
OutT
,
NumOuts
>
,
VecSize
,
Functor
,
Arity
,
kCallElementwiseAny
>
()(
func
,
args
,
result
);
ElementwiseWriteDataCaller
<
OutT
,
VecSize
,
IsBoundary
,
NumOuts
>
()(
pten
::
funcs
::
ElementwisePrimitiveCaller
<
InT
,
ConditionalT
<
OutT
,
NumOuts
>
,
VecSize
,
Functor
,
Arity
,
kCallElementwiseAny
>
()(
func
,
args
,
result
);
pten
::
funcs
::
ElementwiseWriteDataCaller
<
OutT
,
VecSize
,
IsBoundary
,
NumOuts
>
()(
outs
,
result
,
block_offset
,
num
);
}
...
...
@@ -864,8 +566,9 @@ void LaunchElementwiseCudaKernel(const KPDevice &ctx,
dims_size
.
emplace_back
(
in
->
dims
().
size
());
}
if
(
no_broadcast_flag
)
{
LaunchSameDimsElementwiseCudaKernel
<
ET
,
InT
,
OutT
,
Functor
,
NumOuts
>
(
ctx
,
ins
,
outs
,
func
);
pten
::
funcs
::
LaunchSameDimsElementwiseCudaKernel
<
ET
,
InT
,
OutT
,
Functor
,
NumOuts
>
(
ctx
,
ins
,
outs
,
func
);
}
else
{
axis
=
axis
==
-
1
?
*
std
::
max_element
(
dims_size
.
begin
(),
dims_size
.
end
())
-
...
...
paddle/pten/kernels/gpu/reduce.h
浏览文件 @
a1980d9c
...
...
@@ -45,7 +45,7 @@ namespace cub = hipcub;
#include "paddle/pten/api/ext/dispatch.h"
#include "paddle/pten/backends/gpu/gpu_context.h"
#include "paddle/pten/core/dense_tensor.h"
#include "paddle/pten/kernels/
gpu/elementwi
se.h"
#include "paddle/pten/kernels/
funcs/elementwise_ba
se.h"
// Reduce split or not, Whether to use ReduceHigherDim
#define REDUCE_SPLIT_BOUNDARY 512
...
...
@@ -1095,7 +1095,7 @@ void TensorReduceFunctorImpl(const pten::DenseTensor& x,
if
(
config
.
reduce_num
==
1
)
{
std
::
vector
<
const
DenseTensor
*>
inputs
=
{
&
x
};
std
::
vector
<
DenseTensor
*>
outputs
=
{
y
};
pten
::
LaunchSameDimsElementwiseCudaKernel
<
ElementwiseType
::
kUnary
,
Tx
,
Ty
>
(
funcs
::
LaunchSameDimsElementwiseCudaKernel
<
ElementwiseType
::
kUnary
,
Tx
,
Ty
>
(
*
dev_ctx
,
inputs
,
&
outputs
,
transform
);
return
;
}
...
...
paddle/pten/kernels/gpu/scale_kernel.cu
浏览文件 @
a1980d9c
...
...
@@ -16,8 +16,8 @@ limitations under the License. */
#include "paddle/pten/backends/gpu/gpu_context.h"
#include "paddle/pten/core/kernel_registry.h"
#include "paddle/pten/kernels/funcs/elementwise_base.h"
// See Note [ Why still include the fluid headers? ]
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
#include "paddle/fluid/platform/float16.h"
namespace
pten
{
...
...
@@ -55,7 +55,7 @@ void ScaleKernel(const Context& dev_ctx,
inputs
.
emplace_back
(
&
x
);
outputs
.
emplace_back
(
out
);
out
->
mutable_data
<
T
>
();
LaunchSameDimsElementwiseCudaKernel
<
ElementwiseType
::
kUnary
,
T
,
T
>
(
funcs
::
LaunchSameDimsElementwiseCudaKernel
<
ElementwiseType
::
kUnary
,
T
,
T
>
(
dev_ctx
,
inputs
,
&
outputs
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录