test_sum_op.py 24.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import os
import tempfile
17 18 19
import unittest

import gradient_checker
20
import numpy as np
21
from decorator_helper import prog_scope
22 23 24 25 26
from eager_op_test import (
    OpTest,
    convert_float_to_uint16,
    convert_uint16_to_float,
)
27

28 29
import paddle
import paddle.fluid as fluid
T
tangwei12 已提交
30
import paddle.fluid.core as core
31 32
import paddle.inference as paddle_infer
from paddle import enable_static
T
tangwei12 已提交
33
from paddle.fluid.op import Operator
34 35 36 37 38 39 40


def sum_wrapper(X, use_mkldnn=False):
    res = 0
    for x in X:
        res += x
    return res
41 42 43 44 45


class TestSumOp(OpTest):
    def setUp(self):
        self.op_type = "sum"
46
        self.python_api = sum_wrapper
C
chengduo 已提交
47
        self.init_kernel_type()
48 49
        self.use_mkldnn = False
        self.init_kernel_type()
Z
zhupengyang 已提交
50 51 52
        x0 = np.random.random((3, 40)).astype(self.dtype)
        x1 = np.random.random((3, 40)).astype(self.dtype)
        x2 = np.random.random((3, 40)).astype(self.dtype)
53
        self.inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
54 55
        y = x0 + x1 + x2
        self.outputs = {'Out': y}
56
        self.attrs = {'use_mkldnn': self.use_mkldnn}
57

C
chengduo 已提交
58
    def init_kernel_type(self):
59
        self.dtype = np.float64
C
chengduo 已提交
60

61
    def test_check_output(self):
Q
qijun 已提交
62
        self.check_output()
63 64

    def test_check_grad(self):
Q
qijun 已提交
65
        self.check_grad(['x0'], 'Out')
66 67


68
class TestSelectedRowsSumOp(unittest.TestCase):
C
chengduo 已提交
69
    def setUp(self):
Q
qiaolongfei 已提交
70 71 72
        self.height = 10
        self.row_numel = 12
        self.rows = [0, 1, 2, 3, 4, 5, 6]
73
        self.dtype = np.float64
C
chengduo 已提交
74
        self.init_kernel_type()
Q
qiaolongfei 已提交
75

C
chengduo 已提交
76
    def check_with_place(self, place, inplace):
77 78 79 80 81 82 83 84 85 86 87 88
        self.check_input_and_optput(
            core.Scope(), place, inplace, True, True, True
        )
        self.check_input_and_optput(
            core.Scope(), place, inplace, False, True, True
        )
        self.check_input_and_optput(
            core.Scope(), place, inplace, False, False, True
        )
        self.check_input_and_optput(
            core.Scope(), place, inplace, False, False, False
        )
T
tangwei12 已提交
89

C
chengduo 已提交
90
    def init_kernel_type(self):
C
chengduo 已提交
91
        pass
C
chengduo 已提交
92

C
chengduo 已提交
93 94 95 96
    def _get_array(self, rows, row_numel):
        array = np.ones((len(rows), row_numel)).astype(self.dtype)
        for i in range(len(rows)):
            array[i] *= rows[i]
Q
qiaolongfei 已提交
97 98
        return array

99 100 101 102 103 104 105 106 107
    def check_input_and_optput(
        self,
        scope,
        place,
        inplace,
        w1_has_data=False,
        w2_has_data=False,
        w3_has_data=False,
    ):
T
tangwei12 已提交
108 109 110 111

        self.create_selected_rows(scope, place, "W1", w1_has_data)
        self.create_selected_rows(scope, place, "W2", w2_has_data)
        self.create_selected_rows(scope, place, "W3", w3_has_data)
T
tangwei12 已提交
112 113

        # create Out Variable
Q
Qiao Longfei 已提交
114 115 116 117 118
        if inplace:
            out_var_name = "W1"
        else:
            out_var_name = "Out"
        out = scope.var(out_var_name).get_selected_rows()
T
tangwei12 已提交
119 120

        # create and run sum operator
Q
Qiao Longfei 已提交
121
        sum_op = Operator("sum", X=["W1", "W2", "W3"], Out=out_var_name)
T
tangwei12 已提交
122 123
        sum_op.run(scope, place)

T
tangwei12 已提交
124
        has_data_w_num = 0
Q
qiaolongfei 已提交
125 126
        for has_data in [w1_has_data, w2_has_data, w3_has_data]:
            if has_data:
T
tangwei12 已提交
127
                has_data_w_num += 1
T
tangwei12 已提交
128

Q
qiaolongfei 已提交
129 130
        if has_data_w_num > 0:
            self.assertEqual(len(out.rows()), 7)
131 132
            np.testing.assert_array_equal(
                np.array(out.get_tensor()),
133 134
                self._get_array(self.rows, self.row_numel) * has_data_w_num,
            )
Q
qiaolongfei 已提交
135 136
        else:
            self.assertEqual(len(out.rows()), 0)
T
tangwei12 已提交
137

Q
qiaolongfei 已提交
138
    def create_selected_rows(self, scope, place, var_name, has_data):
T
tangwei12 已提交
139
        # create and initialize W Variable
Q
qiaolongfei 已提交
140 141
        if has_data:
            rows = self.rows
T
tangwei12 已提交
142 143 144 145 146
        else:
            rows = []

        var = scope.var(var_name)
        w_selected_rows = var.get_selected_rows()
Q
qiaolongfei 已提交
147
        w_selected_rows.set_height(self.height)
T
tangwei12 已提交
148
        w_selected_rows.set_rows(rows)
C
chengduo 已提交
149
        w_array = self._get_array(self.rows, self.row_numel)
T
tangwei12 已提交
150 151 152 153 154 155 156
        w_tensor = w_selected_rows.get_tensor()
        w_tensor.set(w_array, place)

        return var

    def test_w_is_selected_rows(self):
        places = [core.CPUPlace()]
Q
Qiao Longfei 已提交
157 158
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
T
tangwei12 已提交
159
        for place in places:
Q
Qiao Longfei 已提交
160 161
            for inplace in [True, False]:
                self.check_with_place(place, inplace)
T
tangwei12 已提交
162 163


164 165 166 167 168
class TestSelectedRowsSumOpInt(TestSelectedRowsSumOp):
    def init_kernel_type(self):
        self.dtype = np.int32


169 170 171
@unittest.skipIf(
    not core.supports_bfloat16(), 'place does not support BF16 evaluation'
)
172 173 174 175 176 177 178 179
class TestSelectedRowsSumBF16Op(TestSelectedRowsSumOp):
    def setUp(self):
        self.height = 10
        self.row_numel = 12
        self.rows = [0, 1, 2, 3, 4, 5, 6]
        self.dtype = np.uint16
        self.init_kernel_type()
        np.random.seed(12345)
180 181 182
        self.data = np.random.random((len(self.rows), self.row_numel)).astype(
            np.float32
        )
183 184 185 186 187 188 189

    def _get_array(self, rows, row_numel):
        if len(rows) > 0:
            return convert_float_to_uint16(self.data)
        else:
            return np.ndarray((0, row_numel), dtype=self.dtype)

190 191 192 193 194 195 196 197 198
    def check_input_and_optput(
        self,
        scope,
        place,
        inplace,
        w1_has_data=False,
        w2_has_data=False,
        w3_has_data=False,
    ):
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

        self.create_selected_rows(scope, place, "W1", w1_has_data)
        self.create_selected_rows(scope, place, "W2", w2_has_data)
        self.create_selected_rows(scope, place, "W3", w3_has_data)

        # create Out Variable
        if inplace:
            out_var_name = "W1"
        else:
            out_var_name = "Out"
        out = scope.var(out_var_name).get_selected_rows()

        # create and run sum operator
        sum_op = Operator("sum", X=["W1", "W2", "W3"], Out=out_var_name)
        sum_op.run(scope, place)

        has_data_w_num = 0
        for has_data in [w1_has_data, w2_has_data, w3_has_data]:
            if has_data:
                has_data_w_num += 1

        if has_data_w_num > 0:
            self.assertEqual(len(out.rows()), 7)
            out_bf16 = np.array(out.get_tensor())
            out_fp32 = convert_uint16_to_float(out_bf16)
224 225 226 227 228 229
            ref_fp32 = (
                convert_uint16_to_float(
                    self._get_array(self.rows, self.row_numel)
                )
                * has_data_w_num
            )
230 231 232 233 234 235 236 237 238
            np.testing.assert_allclose(out_fp32, ref_fp32, atol=0, rtol=0.95e-2)
        else:
            self.assertEqual(len(out.rows()), 0)

    def test_w_is_selected_rows(self):
        for inplace in [True, False]:
            self.check_with_place(core.CPUPlace(), inplace)


L
lidanqing 已提交
239 240 241 242 243
class TestSelectedRowsSumBF16OpBigRow(TestSelectedRowsSumBF16Op):
    def init_kernel_type(self):
        self.row_numel = 102


C
chengduo 已提交
244 245 246 247 248
class TestLoDTensorAndSelectedRowsOp(TestSelectedRowsSumOp):
    def setUp(self):
        self.height = 10
        self.row_numel = 12
        self.rows = [0, 1, 2, 2, 4, 5, 6]
249
        self.dtype = np.float64
C
chengduo 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

    def check_with_place(self, place, inplace):
        scope = core.Scope()
        if inplace:
            self.create_lod_tensor(scope, place, "x1")
            self.create_selected_rows(scope, place, "x2", True)
            out = scope.var("x1").get_tensor()
            out_name = "x1"
        else:
            self.create_selected_rows(scope, place, "x1", True)
            self.create_lod_tensor(scope, place, "x2")
            out = scope.var("out").get_tensor()
            out_name = "out"

        # create and run sum operator
        sum_op = Operator("sum", X=["x1", "x2"], Out=out_name)
        sum_op.run(scope, place)

        result = np.ones((1, self.height)).astype(np.int32).tolist()[0]
        for ele in self.rows:
            result[ele] += 1

        out_t = np.array(out)
        self.assertEqual(out_t.shape[0], self.height)
274 275
        np.testing.assert_array_equal(
            out_t,
276 277 278
            self._get_array([i for i in range(self.height)], self.row_numel)
            * np.tile(np.array(result).reshape(self.height, 1), self.row_numel),
        )
C
chengduo 已提交
279 280 281 282

    def create_lod_tensor(self, scope, place, var_name):
        var = scope.var(var_name)
        w_tensor = var.get_tensor()
283 284 285
        w_array = self._get_array(
            [i for i in range(self.height)], self.row_numel
        )
C
chengduo 已提交
286 287 288 289
        w_tensor.set(w_array, place)
        return var


290 291 292 293
# ----------- test fp16 -----------
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
C
chengduo 已提交
294 295 296 297 298
class TestFP16SumOp(TestSumOp):
    def init_kernel_type(self):
        self.dtype = np.float16

    def test_check_output(self):
C
chengduo 已提交
299 300 301
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_output_with_place(place, atol=2e-2)
C
chengduo 已提交
302 303 304 305

    # FIXME: Because of the precision fp16, max_relative_error
    # should be 0.15 here.
    def test_check_grad(self):
C
chengduo 已提交
306 307 308
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
            self.check_grad(['x0'], 'Out', max_relative_error=0.15)
C
chengduo 已提交
309 310


C
chengduo 已提交
311
def create_test_sum_fp16_class(parent):
312 313 314
    @unittest.skipIf(
        not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
C
chengduo 已提交
315 316 317
    class TestSumFp16Case(parent):
        def init_kernel_type(self):
            self.dtype = np.float16
C
chengduo 已提交
318

C
chengduo 已提交
319
        def test_w_is_selected_rows(self):
C
chengduo 已提交
320 321 322 323 324
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                for inplace in [True, False]:
                    self.check_with_place(place, inplace)

C
chengduo 已提交
325 326 327 328 329
    cls_name = "{0}_{1}".format(parent.__name__, "SumFp16Test")
    TestSumFp16Case.__name__ = cls_name
    globals()[cls_name] = TestSumFp16Case


330
# ----------- test bf16 -----------
331 332 333 334 335 336 337 338 339
class TestSumBF16Op(OpTest):
    def setUp(self):
        self.op_type = "sum"
        self.init_kernel_type()
        x0 = np.random.random((3, 40)).astype(np.float32)
        x1 = np.random.random((3, 40)).astype(np.float32)
        x2 = np.random.random((3, 40)).astype(np.float32)
        y = x0 + x1 + x2
        self.inputs = {
340 341 342 343 344
            "X": [
                ("x0", convert_float_to_uint16(x0)),
                ("x1", convert_float_to_uint16(x1)),
                ("x2", convert_float_to_uint16(x2)),
            ]
345 346 347 348 349 350 351
        }
        self.outputs = {'Out': convert_float_to_uint16(y)}

    def init_kernel_type(self):
        self.dtype = np.uint16

    def test_check_output(self):
352 353
        # new dynamic graph mode does not support unit16 type
        self.check_output(check_dygraph=False)
354 355

    def test_check_grad(self):
356 357 358 359
        # new dynamic graph mode does not support unit16 type
        self.check_grad(
            ['x0'], 'Out', numeric_grad_delta=0.5, check_dygraph=False
        )
360 361


S
Steffy-zxf 已提交
362
class API_Test_Add_n(unittest.TestCase):
363 364
    def test_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
365 366 367 368 369 370
            input0 = fluid.layers.fill_constant(
                shape=[2, 3], dtype='int64', value=5
            )
            input1 = fluid.layers.fill_constant(
                shape=[2, 3], dtype='int64', value=3
            )
371 372
            expected_result = np.empty((2, 3))
            expected_result.fill(8)
S
Steffy-zxf 已提交
373
            sum_value = paddle.add_n([input0, input1])
374 375 376
            exe = fluid.Executor(fluid.CPUPlace())
            result = exe.run(fetch_list=[sum_value])

S
Steffy-zxf 已提交
377 378 379 380 381 382 383 384 385
            self.assertEqual((result == expected_result).all(), True)

        with fluid.dygraph.guard():
            input0 = paddle.ones(shape=[2, 3], dtype='float32')
            expected_result = np.empty((2, 3))
            expected_result.fill(2)
            sum_value = paddle.add_n([input0, input0])

            self.assertEqual((sum_value.numpy() == expected_result).all(), True)
386

387
    def test_dygraph_api(self):
388
        with fluid.dygraph.guard():
389 390 391 392 393 394 395 396
            input0 = paddle.ones(shape=[2, 3], dtype='float32')
            input1 = paddle.ones(shape=[2, 3], dtype='float32')
            input0.stop_gradient = False
            input1.stop_gradient = False
            expected_result = np.empty((2, 3))
            expected_result.fill(2)
            sum_value = paddle.add_n([input0, input1])
            self.assertEqual((sum_value.numpy() == expected_result).all(), True)
397

398 399 400 401 402 403 404 405 406
            expected_grad_result = np.empty((2, 3))
            expected_grad_result.fill(1)
            sum_value.backward()
            self.assertEqual(
                (input0.grad.numpy() == expected_grad_result).all(), True
            )
            self.assertEqual(
                (input1.grad.numpy() == expected_grad_result).all(), True
            )
407

W
Weilong Wu 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
    def test_add_n_and_add_and_grad(self):
        with fluid.dygraph.guard():
            np_x = np.array([[1, 2, 3], [4, 5, 6]])
            np_y = [[7, 8, 9], [10, 11, 12]]
            np_z = [[1, 1, 1], [1, 1, 1]]
            x = paddle.to_tensor(np_x, dtype='float32', stop_gradient=False)
            y = paddle.to_tensor(np_y, dtype='float32', stop_gradient=False)
            z = paddle.to_tensor(np_z, dtype='float32')

            out1 = x + z
            out2 = y + z
            out = paddle.add_n([out1, out2])

            dx, dy = paddle.grad([out], [x, y], create_graph=True)

423
            expected_out = np.array([[10.0, 12.0, 14.0], [16.0, 18.0, 20.0]])
W
Weilong Wu 已提交
424 425 426
            expected_dx = np.array([[1, 1, 1], [1, 1, 1]])
            expected_dy = np.array([[1, 1, 1], [1, 1, 1]])

427 428 429
            np.testing.assert_allclose(out, expected_out, rtol=1e-05)
            np.testing.assert_allclose(dx, expected_dx, rtol=1e-05)
            np.testing.assert_allclose(dy, expected_dy, rtol=1e-05)
W
Weilong Wu 已提交
430

431

432 433 434
class TestRaiseSumError(unittest.TestCase):
    def test_errors(self):
        def test_type():
435
            paddle.add_n([11, 22])
436 437 438 439 440 441

        self.assertRaises(TypeError, test_type)

        def test_dtype():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
            data2 = fluid.data(name="input2", shape=[10], dtype="int8")
442
            paddle.add_n([data1, data2])
443 444 445 446 447

        self.assertRaises(TypeError, test_dtype)

        def test_dtype1():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
448
            paddle.add_n(data1)
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488

        self.assertRaises(TypeError, test_dtype1)


class TestRaiseSumsError(unittest.TestCase):
    def test_errors(self):
        def test_type():
            fluid.layers.sums([11, 22])

        self.assertRaises(TypeError, test_type)

        def test_dtype():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
            data2 = fluid.data(name="input2", shape=[10], dtype="int8")
            fluid.layers.sums([data1, data2])

        self.assertRaises(TypeError, test_dtype)

        def test_dtype1():
            data1 = fluid.data(name="input1", shape=[10], dtype="int8")
            fluid.layers.sums(data1)

        self.assertRaises(TypeError, test_dtype1)

        def test_out_type():
            data1 = fluid.data(name="input1", shape=[10], dtype="flaot32")
            data2 = fluid.data(name="input2", shape=[10], dtype="float32")
            fluid.layers.sums([data1, data2], out=[10])

        self.assertRaises(TypeError, test_out_type)

        def test_out_dtype():
            data1 = fluid.data(name="input1", shape=[10], dtype="flaot32")
            data2 = fluid.data(name="input2", shape=[10], dtype="float32")
            out = fluid.data(name="out", shape=[10], dtype="int8")
            fluid.layers.sums([data1, data2], out=out)

        self.assertRaises(TypeError, test_out_dtype)


L
Leo Chen 已提交
489 490 491 492
class TestSumOpError(unittest.TestCase):
    def test_errors(self):
        def test_empty_list_input():
            with fluid.dygraph.guard():
493
                fluid._legacy_C_ops.sum([])
L
Leo Chen 已提交
494 495 496

        def test_list_of_none_input():
            with fluid.dygraph.guard():
497
                fluid._legacy_C_ops.sum([None])
L
Leo Chen 已提交
498 499 500 501 502

        self.assertRaises(Exception, test_empty_list_input)
        self.assertRaises(Exception, test_list_of_none_input)


C
chengduo 已提交
503 504
create_test_sum_fp16_class(TestSelectedRowsSumOp)
create_test_sum_fp16_class(TestLoDTensorAndSelectedRowsOp)
C
chengduo 已提交
505

506 507 508 509 510 511 512

class TestReduceOPTensorAxisBase(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()
        paddle.seed(2022)
        self.temp_dir = tempfile.TemporaryDirectory()
        self.save_path = os.path.join(self.temp_dir.name, 'reduce_tensor_axis')
513 514 515 516 517
        self.place = (
            paddle.CUDAPlace(0)
            if paddle.is_compiled_with_cuda()
            else paddle.CPUPlace()
        )
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
        self.keepdim = False
        self.init_data()

    def tearDwon(self):
        self.temp_dir.cleanup()

    def init_data(self):
        self.pd_api = paddle.sum
        self.np_api = np.sum
        self.x = paddle.randn([10, 5, 9, 9], dtype='float64')
        self.np_axis = np.array((1, 2), dtype='int64')
        self.tensor_axis = paddle.to_tensor(self.np_axis, dtype='int64')

    def test_dygraph(self):
        self.x.stop_gradient = False
        pd_out = self.pd_api(self.x, self.tensor_axis)
        np_out = self.np_api(self.x.numpy(), tuple(self.np_axis))
        np.testing.assert_allclose(
536 537
            pd_out.numpy() if pd_out.size > 1 else pd_out.item(), np_out
        )
538 539 540 541 542 543 544 545 546
        pd_out.backward()
        self.assertEqual(self.x.gradient().shape, tuple(self.x.shape))

    def test_static_and_infer(self):
        paddle.enable_static()
        main_prog = paddle.static.Program()
        starup_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, starup_prog):
            # run static
547 548 549
            x = paddle.static.data(
                shape=self.x.shape, name='x', dtype='float32'
            )
550 551 552 553 554 555 556 557 558 559 560 561 562
            if isinstance(self.tensor_axis, paddle.Tensor):
                axis = paddle.assign(self.np_axis)
            else:
                axis = []
                for i, item in enumerate(self.tensor_axis):
                    if isinstance(item, int):
                        axis.append(item)
                    else:
                        axis.append(paddle.full([1], self.np_axis[i], 'int64'))

            linear = paddle.nn.Linear(x.shape[-1], 5)
            linear_out = linear(x)
            out = self.pd_api(linear_out, axis, keepdim=self.keepdim)
563

564
            sgd = paddle.optimizer.SGD(learning_rate=0.0)
565
            sgd.minimize(paddle.mean(out))
566 567
            exe = paddle.static.Executor(self.place)
            exe.run(starup_prog)
568 569 570
            static_out = exe.run(
                feed={'x': self.x.numpy().astype('float32')}, fetch_list=[out]
            )
571 572 573

            # run infer
            paddle.static.save_inference_model(self.save_path, [x], [out], exe)
574 575 576
            config = paddle_infer.Config(
                self.save_path + '.pdmodel', self.save_path + '.pdiparams'
            )
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
            if paddle.is_compiled_with_cuda():
                config.enable_use_gpu(100, 0)
            else:
                config.disable_gpu()
            predictor = paddle_infer.create_predictor(config)
            input_names = predictor.get_input_names()
            input_handle = predictor.get_input_handle(input_names[0])
            fake_input = self.x.numpy().astype('float32')
            input_handle.reshape(self.x.shape)
            input_handle.copy_from_cpu(fake_input)
            predictor.run()
            output_names = predictor.get_output_names()
            output_handle = predictor.get_output_handle(output_names[0])
            infer_out = output_handle.copy_to_cpu()
            np.testing.assert_allclose(static_out[0], infer_out)


class TestSumWithTensorAxis1(TestReduceOPTensorAxisBase):
    def init_data(self):
        self.pd_api = paddle.sum
        self.np_api = np.sum
        self.x = paddle.randn([10, 5, 9, 9], dtype='float64')
        self.np_axis = np.array([0, 1, 2], dtype='int64')
        self.tensor_axis = [
            0,
            paddle.to_tensor([1], 'int64'),
603
            paddle.to_tensor([2], 'int64'),
604 605 606
        ]


607 608 609 610 611 612 613 614 615 616
class TestAddNDoubleGradCheck(unittest.TestCase):
    def add_n_wrapper(self, x):
        return paddle.add_n(x)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
617
        data1 = paddle.static.data('data1', [3, 4, 5], dtype)
618
        data1.persistable = True
G
GGBond8488 已提交
619
        data2 = paddle.static.data('data2', [3, 4, 5], dtype)
620 621 622 623 624
        data2.persistable = True
        out = paddle.add_n([data1, data2])
        data1_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)
        data2_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)

625 626 627 628 629 630 631
        gradient_checker.double_grad_check(
            [data1, data2],
            out,
            x_init=[data1_arr, data2_arr],
            place=place,
            eps=eps,
        )
632
        gradient_checker.double_grad_check_for_dygraph(
633 634
            self.add_n_wrapper,
            [data1, data2],
635 636
            out,
            x_init=[data1_arr, data2_arr],
637 638
            place=place,
        )
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestAddNTripleGradCheck(unittest.TestCase):
    def add_n_wrapper(self, x):
        return paddle.add_n(x)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
659
        data1 = paddle.static.data('data1', [3, 4, 5], dtype)
660
        data1.persistable = True
G
GGBond8488 已提交
661
        data2 = paddle.static.data('data2', [3, 4, 5], dtype)
662 663 664 665 666
        data2.persistable = True
        out = paddle.add_n([data1, data2])
        data1_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)
        data2_arr = np.random.uniform(-1, 1, data1.shape).astype(dtype)

667 668 669 670 671 672 673
        gradient_checker.triple_grad_check(
            [data1, data2],
            out,
            x_init=[data1_arr, data2_arr],
            place=place,
            eps=eps,
        )
674
        gradient_checker.triple_grad_check_for_dygraph(
675 676
            self.add_n_wrapper,
            [data1, data2],
677 678
            out,
            x_init=[data1_arr, data2_arr],
679 680
            place=place,
        )
681 682 683 684 685 686 687 688 689 690

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


691 692 693 694 695 696 697 698 699 700
class TestSumDoubleGradCheck(unittest.TestCase):
    def sum_wrapper(self, x):
        return paddle.sum(x[0], axis=1, keepdim=True)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
701
        data = paddle.static.data('data', [2, 4], dtype)
702 703 704 705
        data.persistable = True
        out = paddle.sum(data, axis=1, keepdim=True)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

706 707 708 709 710 711
        gradient_checker.double_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.sum_wrapper, [data], out, x_init=[data_arr], place=place
        )
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestSumTripleGradCheck(unittest.TestCase):
    def sum_wrapper(self, x):
        return paddle.sum(x[0], axis=1, keepdim=True)

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
732
        data = paddle.static.data('data', [2, 4], dtype)
733 734 735 736
        data.persistable = True
        out = paddle.sum(data, axis=1, keepdim=True)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

737 738 739 740 741 742
        gradient_checker.triple_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.sum_wrapper, [data], out, x_init=[data_arr], place=place
        )
743 744 745 746 747 748 749 750 751 752

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


Q
qijun 已提交
753
if __name__ == "__main__":
754
    enable_static()
755
    unittest.main()