mkldnn_reuse.h 48.1 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <memory>
17
#include <sstream>
J
Jacek Czaja 已提交
18
#include <string>
19
#include <utility>
J
Jacek Czaja 已提交
20
#include <vector>
21
#include "boost/optional.hpp"
X
xiaoli.liu@intel.com 已提交
22
#include "paddle/fluid/framework/data_layout_transform.h"
J
Jacek Czaja 已提交
23 24 25 26 27 28 29 30
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace platform {

using user_function = std::function<std::shared_ptr<float>(const float*)>;
31
using memory = mkldnn::memory;
J
Jacek Czaja 已提交
32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
template <typename T, typename TForward, typename TBackward>
class MKLDNNHandlerT {
 public:
  MKLDNNHandlerT(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
                 platform::Place cpu_place, const std::string& base_key)
      : dev_ctx_(dev_ctx),
        engine_(engine),
        place_(cpu_place),
        key_common_(base_key),
        fwd_pd_(nullptr),
        bwd_pd_(nullptr) {
    if (platform::get_cur_mkldnn_session_id() !=
        platform::kMKLDNNSessionID_Default) {
      key_ = key_common_;
    } else {
      key_ = key_common_ + "-t:" + ThreadIDasStr();
    }
  }

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
  template <typename... Args>
  std::shared_ptr<TForward> AcquireForwardPrimitive(Args&&... args) {
    const std::string key_p = key_ + "@forward_p";
    auto forward_p =
        std::static_pointer_cast<TForward>(dev_ctx_.GetBlob(key_p));
    if (forward_p == nullptr) {
      forward_p =
          std::make_shared<TForward>(*fwd_pd_, std::forward<Args>(args)...);
      dev_ctx_.SetBlob(key_p, forward_p);
    }
    return forward_p;
  }

  template <typename... Args>
  std::shared_ptr<TBackward> AcquireBackwardPrimitive(Args&&... args) {
    const std::string key_p = key_ + "@backward_p";
    auto backward_p =
        std::static_pointer_cast<TBackward>(dev_ctx_.GetBlob(key_p));
    if (backward_p == nullptr) {
      backward_p =
          std::make_shared<TBackward>(*bwd_pd_, std::forward<Args>(args)...);
      dev_ctx_.SetBlob(key_p, backward_p);
    }
    return backward_p;
  }

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(fwd_pd_->src_primitive_desc(),
                                            to_void_cast<T>(input_data),
                                            "@src_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output) {
    T* ptr = output->mutable_data<T>(place_,
                                     fwd_pd_->dst_primitive_desc().get_size());
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const framework::Tensor* output) {
    const T* output_data = output->data<T>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->dst_primitive_desc(),
                                            to_void_cast<T>(output_data),
                                            "@bwd-dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
      const framework::Tensor* diffdst) {
    const T* ptr = diffdst->data<T>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_dst_primitive_desc(),
                                            to_void_cast<T>(ptr),
                                            "@diff_dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
      framework::Tensor* diffsrc) {
    T* ptr = diffsrc->mutable_data<T>(
        place_, bwd_pd_->diff_src_primitive_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_src_primitive_desc(),
                                            ptr, "@diff_src_mem_p");
  }

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
 protected:
  template <typename... Args>
  void AcquireForwardPrimitiveDescriptor(Args&&... args) {
    // Forward PD has to be passed to Grad op that
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
    const std::string key_pd = key_common_ + "@forward_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (fwd_pd_ == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
      fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
          dev_ctx_.GetBlob(key_pd));
      if (fwd_pd_ == nullptr) {
        auto fwd_desc = typename TForward::desc(std::forward<Args>(args)...);
        fwd_pd_ = std::make_shared<typename TForward::primitive_desc>(fwd_desc,
                                                                      engine_);
        dev_ctx_.SetBlob(key_pd, fwd_pd_);
      }
    }
  }

  template <typename... Args>
  void AcquireBackwardPrimitiveDescriptor(Args&&... args) {
143 144 145
    const std::string key_fwd_pd = key_common_ + "@forward_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_fwd_pd));
146 147 148 149 150 151 152 153 154 155 156 157
    PADDLE_ENFORCE_NOT_NULL(fwd_pd_);
    const std::string key_pd = key_ + "@backward_pd";
    bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (bwd_pd_ == nullptr) {
      auto bwd_desc = typename TBackward::desc(std::forward<Args>(args)...);
      bwd_pd_ = std::make_shared<typename TBackward::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
      dev_ctx_.SetBlob(key_pd, bwd_pd_);
    }
  }

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      mkldnn::memory::primitive_desc mdp, void* ptr,
      const std::string& suffix) {
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      mem_p = std::make_shared<mkldnn::memory>(mdp, ptr);
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

  const MKLDNNDeviceContext& dev_ctx_;
  mkldnn::engine engine_;
  platform::Place place_;
  std::string key_;
  std::string key_common_;
  std::shared_ptr<typename TForward::primitive_desc> fwd_pd_;
  std::shared_ptr<typename TBackward::primitive_desc> bwd_pd_;
};

// TODO(grygielski) this class will be deleted later.
J
Jacek Czaja 已提交
183 184 185 186
class MKLDNNHandler {
 public:
  MKLDNNHandler(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
                const std::string& base_key)
187
      : dev_ctx_(dev_ctx), engine_(engine), key_common_(base_key) {
188 189
    if (platform::get_cur_mkldnn_session_id() !=
        platform::kMKLDNNSessionID_Default) {
190
      key_ = key_common_;
191
    } else {
A
Adam 已提交
192
      key_ = key_common_ + "-t:" + ThreadIDasStr();
193
    }
194
  }
J
Jacek Czaja 已提交
195 196 197 198 199 200 201 202 203 204 205

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_src_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_dst_mem_p");
  }

A
Adam 已提交
206
  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
J
Jacek Czaja 已提交
207
      const mkldnn::memory::desc& md, void* ptr) {
A
Adam 已提交
208
    return this->AcquireMemory(md, ptr, "@user_diff_src_mem_p");
J
Jacek Czaja 已提交
209 210
  }

A
Adam 已提交
211
  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
J
Jacek Czaja 已提交
212
      const mkldnn::memory::desc& md, void* ptr) {
A
Adam 已提交
213
    return this->AcquireMemory(md, ptr, "@user_diff_dst_mem_p");
J
Jacek Czaja 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      mkldnn::memory::primitive_desc mdp, void* ptr,
      const std::string& suffix) {
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      mem_p = std::make_shared<mkldnn::memory>(mdp, ptr);
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

  // This incarnation of AcquireMemory can call user function eg. custom reorder
  // or preprocessing routine if needed
  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const mkldnn::memory::desc& md, void* ptr, const std::string& suffix,
      user_function custom_func = {}) {
    /*Generate key*/
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      // Call custom reorder/preprocessing func if available
      if (custom_func) {
        auto reordered_data = custom_func(reinterpret_cast<const float*>(ptr));
        dev_ctx_.SetBlob(local_key + "-custom_reorder", reordered_data);
        ptr = reinterpret_cast<void*>(reordered_data.get());
      }

      mem_p = std::make_shared<mkldnn::memory>(
          mkldnn::memory::primitive_desc{md, engine_}, ptr);
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

257 258
  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const std::vector<int>& dims, const mkldnn::memory::data_type dtype,
259
      const MKLDNNMemoryFormat& fmt, void* ptr, const std::string& suffix) {
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
    /*Generate key*/
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      auto md = mkldnn::memory::desc(dims, dtype, fmt);

      mem_p = std::make_shared<mkldnn::memory>(
          mkldnn::memory::primitive_desc{md, engine_}, ptr);
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

J
Jacek Czaja 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const std::shared_ptr<mkldnn::memory>& user_memory_p,
      const std::shared_ptr<mkldnn::memory>& target_memory_p,
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto stored_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
        dev_ctx_.GetBlob(key_reorder_p));

    if (stored_reorder_p) {
      pipeline.push_back(*stored_reorder_p);
    } else {
      auto reorder_p =
          std::make_shared<mkldnn::reorder>(*user_memory_p, *target_memory_p);
      dev_ctx_.SetBlob(key_reorder_p, reorder_p);
      pipeline.push_back(*reorder_p);
    }

    return target_memory_p;
  }

  std::shared_ptr<mkldnn::memory> AcquireMemory(
      mkldnn::memory::primitive_desc& mpd,       // NOLINT
      mkldnn::memory::primitive_desc& user_mpd,  // NOLINT
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
305 306
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f}, int mask = 0) {
J
Jacek Czaja 已提交
307 308 309 310 311 312 313 314 315 316 317
    // create reorder primitive if the input format is not the preferred one
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto target_memory_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (target_memory_p == nullptr) {
      target_memory_p = user_memory_p;
      std::shared_ptr<mkldnn::primitive> reorder_p;
      if (mpd != user_mpd) {
        target_memory_p = std::make_shared<mkldnn::memory>(mpd);
318 319 320 321 322 323 324 325 326 327 328 329 330 331
        std::shared_ptr<mkldnn::reorder> reorder_p;
        if (is_INT8) {
          mkldnn::primitive_attr
              attri;  // attribute for int8 weights and bias data reorder.
          attri.set_output_scales(mask, scale_data);

          auto reorder_pd = std::shared_ptr<mkldnn::reorder::primitive_desc>(
              new mkldnn::reorder::primitive_desc(user_mpd, mpd, attri));
          reorder_p = std::shared_ptr<mkldnn::reorder>(new mkldnn::reorder(
              *reorder_pd, *user_memory_p, *target_memory_p));
        } else {
          reorder_p = std::make_shared<mkldnn::reorder>(*user_memory_p,
                                                        *target_memory_p);
        }
J
Jacek Czaja 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);
        pipeline.push_back(*reorder_p);
      }
      dev_ctx_.SetBlob(local_key, target_memory_p);
    } else if (!is_persistent) {
      // Make reorder if needed
      auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
        pipeline.push_back(*reorder_p);
      }
    }
    return target_memory_p;
  }

 protected:
  const MKLDNNDeviceContext& dev_ctx_;
  mkldnn::engine engine_;
  std::string key_;
351
  std::string key_common_;
J
Jacek Czaja 已提交
352 353
};

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
class SumMKLDNNHandler : public MKLDNNHandler {
 public:
  SumMKLDNNHandler(const platform::MKLDNNDeviceContext& dev_ctx,
                   mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {}

  std::shared_ptr<mkldnn::sum::primitive_desc> AcquireSumPrimitiveDescriptor(
      const std::vector<std::shared_ptr<mkldnn::memory>>& src_mems,
      const std::vector<float>& scales, const mkldnn::memory::desc& dst_md) {
    const std::string key_sum_pd = key_ + "@sum_pd";

    sum_pd_ = std::static_pointer_cast<mkldnn::sum::primitive_desc>(
        dev_ctx_.GetBlob(key_sum_pd));
    if (sum_pd_ == nullptr) {
      // Get vector of inputs primitive descriptors
      std::vector<mkldnn::memory::primitive_desc> src_pds;
      for (auto& input_mem : src_mems) {
        src_pds.push_back(input_mem->get_primitive_desc());
      }

      sum_pd_.reset(new mkldnn::sum::primitive_desc(dst_md, scales, src_pds));
      dev_ctx_.SetBlob(key_sum_pd, sum_pd_);
    }

    return sum_pd_;
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(sum_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
  }

A
Adam 已提交
386 387 388 389 390
  std::shared_ptr<mkldnn::memory> AcquireSecondSrcMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_src2_mem_p");
  }

391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
  std::shared_ptr<mkldnn::sum> AcquireSum(
      std::shared_ptr<mkldnn::memory> dst_memory,
      std::vector<mkldnn::primitive::at>* inputs) {
    auto prim_key = key_ + "@sum_p";
    auto sum_p =
        std::static_pointer_cast<mkldnn::sum>(dev_ctx_.GetBlob(prim_key));
    if (sum_p == nullptr) {
      sum_p = std::make_shared<mkldnn::sum>(*(sum_pd_), *inputs, *(dst_memory));
      dev_ctx_.SetBlob(prim_key, sum_p);
    }
    return sum_p;
  }

 private:
  std::shared_ptr<mkldnn::sum::primitive_desc> sum_pd_;
};

408
template <typename T>
409 410 411
class ActivationMKLDNNHandler
    : public MKLDNNHandlerT<T, mkldnn::eltwise_forward,
                            mkldnn::eltwise_backward> {
412
 public:
413 414 415 416 417 418 419
  ActivationMKLDNNHandler(const std::vector<int>& dims,
                          mkldnn::algorithm algorithm, float alpha, float beta,
                          const MKLDNNMemoryFormat fmt, bool is_test,
                          const platform::MKLDNNDeviceContext& dev_ctx,
                          platform::Place cpu_place,
                          const std::string& unique_name)

420 421 422
      : platform::MKLDNNHandlerT<T, mkldnn::eltwise_forward,
                                 mkldnn::eltwise_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
423
            platform::CreateKey(dims, unique_name)) {
424 425 426
    auto md = mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), fmt);

    this->AcquireForwardPrimitiveDescriptor(
427 428
        is_test ? mkldnn::prop_kind::forward_inference
                : mkldnn::prop_kind::forward_training,
429
        algorithm, md, alpha, beta);
430
  }
431

432 433 434 435 436 437 438 439
  ActivationMKLDNNHandler(const std::vector<int>& dims,
                          mkldnn::algorithm algorithm, float alpha, float beta,
                          const MKLDNNMemoryFormat fmt,
                          const MKLDNNMemoryFormat diff_fmt,
                          const platform::MKLDNNDeviceContext& dev_ctx,
                          platform::Place cpu_place,
                          const std::string& unique_name)

440 441 442
      : platform::MKLDNNHandlerT<T, mkldnn::eltwise_forward,
                                 mkldnn::eltwise_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
443
            platform::CreateKey(dims, unique_name)) {
444 445 446 447 448 449 450
    auto diff_dst_md = platform::MKLDNNMemDesc(
        dims, platform::MKLDNNGetDataType<T>(), diff_fmt);
    auto src_md =
        platform::MKLDNNMemDesc(dims, platform::MKLDNNGetDataType<T>(), fmt);

    this->AcquireBackwardPrimitiveDescriptor(algorithm, diff_dst_md, src_md,
                                             alpha, beta);
451
  }
452

453 454 455
  std::shared_ptr<mkldnn::memory> AcquireBackwardSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
456
    return this->AcquireMemoryFromPrimitive(this->bwd_pd_->src_primitive_desc(),
457 458
                                            to_void_cast<T>(input_data),
                                            "@bwd-src_mem_p");
459 460 461
  }
};

J
Jacek Czaja 已提交
462 463 464
template <typename T>
class LRNMKLDNNHandler
    : public MKLDNNHandlerT<T, mkldnn::lrn_forward, mkldnn::lrn_backward> {
465
 public:
J
Jacek Czaja 已提交
466 467 468 469 470
  LRNMKLDNNHandler(const std::vector<int>& dims, const int n, const float alpha,
                   const float beta, const float k,
                   const MKLDNNMemoryFormat fmt, bool is_test,
                   const platform::MKLDNNDeviceContext& dev_ctx,
                   platform::Place cpu_place, const std::string& unique_name)
471

J
Jacek Czaja 已提交
472 473
      : platform::MKLDNNHandlerT<T, mkldnn::lrn_forward, mkldnn::lrn_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
474
            platform::CreateKey(dims, unique_name)) {
J
Jacek Czaja 已提交
475 476 477 478 479 480
    auto src_md =
        mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), fmt);
    this->AcquireForwardPrimitiveDescriptor(
        is_test ? mkldnn::prop_kind::forward_inference
                : mkldnn::prop_kind::forward_training,
        mkldnn::lrn_across_channels, src_md, n, alpha, beta, k);
481 482
  }

J
Jacek Czaja 已提交
483 484 485 486 487 488
  LRNMKLDNNHandler(const std::vector<int>& dims, const int n, const float alpha,
                   const float beta, const float k,
                   const MKLDNNMemoryFormat fmt,
                   const MKLDNNMemoryFormat diff_fmt,
                   const platform::MKLDNNDeviceContext& dev_ctx,
                   platform::Place cpu_place, const std::string& unique_name)
489

J
Jacek Czaja 已提交
490 491
      : platform::MKLDNNHandlerT<T, mkldnn::lrn_forward, mkldnn::lrn_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
492
            platform::CreateKey(dims, unique_name)) {
J
Jacek Czaja 已提交
493 494 495 496
    auto src_md =
        mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), fmt);
    auto diff_md =
        mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), diff_fmt);
497

J
Jacek Czaja 已提交
498 499
    this->AcquireBackwardPrimitiveDescriptor(
        mkldnn::lrn_across_channels, src_md, diff_md, n, alpha, beta, k);
500 501
  }

J
Jacek Czaja 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
  std::shared_ptr<mkldnn::memory> AcquireWorkspaceMemory(
      framework::Tensor* workspace) {
    T* ptr = workspace->mutable_data<T>(
        this->place_, this->fwd_pd_->dst_primitive_desc().get_size());
    return this->AcquireMemoryFromPrimitive(
        this->fwd_pd_->workspace_primitive_desc(), ptr, "@wrk_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireBackwardWorkspaceMemory(
      const framework::Tensor* workspace) {
    const T* workspace_data = workspace->data<T>();
    return this->AcquireMemoryFromPrimitive(
        this->fwd_pd_->workspace_primitive_desc(),
        to_void_cast<T>(workspace_data), "@bwd-wrk_mem_p");
  }
517 518
};

519 520 521
template <typename T>
class PoolingMKLDNNHandler : public MKLDNNHandlerT<T, mkldnn::pooling_forward,
                                                   mkldnn::pooling_backward> {
522
 public:
523 524
  PoolingMKLDNNHandler(
      const std::vector<int>& src_dims, const std::vector<int>& dst_dims,
525
      const std::vector<int>& ksize, const std::vector<int>& strides,
526 527 528 529
      const std::vector<int>& paddings, const std::string& pooling_type,
      bool ceil_mode, const MKLDNNMemoryFormat fmt,
      mkldnn::memory::data_type dt, bool is_test,
      const platform::MKLDNNDeviceContext& dev_ctx, platform::Place cpu_place,
530
      const std::string& unique_name, bool exclude_padding)
531 532 533
      : platform::MKLDNNHandlerT<T, mkldnn::pooling_forward,
                                 mkldnn::pooling_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
534
            platform::CreateKey(src_dims, dt, unique_name)) {
535 536 537 538 539 540 541 542 543 544 545 546 547
    auto src_md = mkldnn::memory::desc(src_dims, dt, fmt);
    /* create memory descriptor for pooling without specified format
     * ('any') which lets a primitive (pooling in this case) choose
     * the memory format preferred for best performance
     */
    auto dst_md =
        platform::MKLDNNMemDesc(dst_dims, dt, MKLDNNMemoryFormat::any);

    std::vector<int> padding_left_top(paddings);
    std::vector<int> padding_right_bottom(paddings);
    if (ceil_mode) {
      CorrectOutputSize(src_dims, dst_dims, ksize, paddings, strides,
                        padding_right_bottom);
548 549
    }

550 551 552
    this->AcquireForwardPrimitiveDescriptor(
        is_test ? mkldnn::prop_kind::forward_inference
                : mkldnn::prop_kind::forward_training,
553 554 555 556 557
        pooling_type == "max"
            ? mkldnn::algorithm::pooling_max
            : (exclude_padding
                   ? mkldnn::algorithm::pooling_avg_exclude_padding
                   : mkldnn::algorithm::pooling_avg_include_padding),
558 559 560 561 562 563 564 565 566 567 568 569
        src_md, dst_md, strides, ksize, padding_left_top, padding_right_bottom,
        mkldnn::padding_kind::zero);
  }

  PoolingMKLDNNHandler(
      const std::vector<int>& diff_dst_dims,
      const std::vector<int>& diff_src_dims, const std::vector<int>& ksize,
      const std::vector<int>& strides, const std::vector<int>& paddings,
      const std::string& pooling_type, bool ceil_mode,
      const MKLDNNMemoryFormat fmt, const MKLDNNMemoryFormat diff_dst_fmt,
      mkldnn::memory::data_type dt,
      const platform::MKLDNNDeviceContext& dev_ctx, platform::Place cpu_place,
570
      const std::string& unique_name, bool exclude_padding)
571 572 573
      : platform::MKLDNNHandlerT<T, mkldnn::pooling_forward,
                                 mkldnn::pooling_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
574
            platform::CreateKey(diff_src_dims, dt, unique_name)) {
575 576 577 578 579 580 581
    auto diff_dst_md = mkldnn::memory::desc(
        diff_dst_dims, platform::MKLDNNGetDataType<T>(), diff_dst_fmt);
    auto diff_src_md =
        mkldnn::memory::desc(diff_src_dims, platform::MKLDNNGetDataType<T>(),
                             MKLDNNMemoryFormat::any);

    this->AcquireBackwardPrimitiveDescriptor(
582 583 584 585 586
        pooling_type == "max"
            ? mkldnn::algorithm::pooling_max
            : (exclude_padding
                   ? mkldnn::algorithm::pooling_avg_exclude_padding
                   : mkldnn::algorithm::pooling_avg_include_padding),
587 588
        diff_src_md, diff_dst_md, strides, ksize, paddings, paddings,
        mkldnn::padding_kind::zero);
589 590 591 592
  }

  std::shared_ptr<mkldnn::memory> AcquireWorkspaceMemory(void) {
    mkldnn::memory::primitive_desc workspace_mpd =
593
        this->fwd_pd_->workspace_primitive_desc();
594 595 596
    // Pooling PD has to be passed to Grad op that
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
597 598 599
    auto local_key = this->key_common_ + "@workspace";
    auto mem_p = std::static_pointer_cast<mkldnn::memory>(
        this->dev_ctx_.GetBlob(local_key));
600 601 602 603
    if (mem_p == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
604 605
      mem_p = std::static_pointer_cast<mkldnn::memory>(
          this->dev_ctx_.GetBlob(local_key));
606 607
      if (mem_p == nullptr) {
        mem_p = std::make_shared<mkldnn::memory>(workspace_mpd);
608
        this->dev_ctx_.SetBlob(local_key, mem_p);
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
      }
    }
    return mem_p;
  }

 private:
  static inline int ComputeCeiledOutput(int input_size, int kernel_size,
                                        int padding, int stride) {
    return (input_size - kernel_size + 2 * padding) / stride + 1;
  }

  static inline void CorrectOutputSize(
      const std::vector<int>& src_tz, const std::vector<int>& dst_tz,
      const std::vector<int>& kernel_size, const std::vector<int>& paddings,
      const std::vector<int>& strides,
      std::vector<int>& right_bot_padding) {  // NOLINT
    for (size_t i = 0; i < right_bot_padding.size(); i++) {
      int desired_size = ComputeCeiledOutput(src_tz[i + 2], kernel_size[i],
                                             paddings[i], strides[i]);
      if (desired_size != dst_tz[i + 2]) {
J
Jacek Czaja 已提交
629
        right_bot_padding[i] += strides[i] - 1;
630 631 632 633 634
      }
    }
  }
};

635 636
class TransposeMKLDNNHandler : public MKLDNNHandler {
 public:
637 638
  TransposeMKLDNNHandler(std::vector<int>& dims,  // NOLINT
                         std::vector<int>& axis,  // NOLINT
639 640 641 642
                         const platform::MKLDNNDeviceContext& dev_ctx,
                         mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        dims_(dims),
643 644 645 646
        axis_(axis),
        logical_axis_(dims.size(), 0) {}

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
647
      const MKLDNNMemoryFormat& fmt, void* ptr) {
648 649 650 651 652 653 654 655 656
    auto local_key = key_ + "@user_src_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      // Make memory descriptor using input format, unless it
      // cannot be trusted (nchw) then make up memory fmt manually
      for (size_t i = 0; i < logical_axis_.size(); ++i) {
        logical_axis_[i] = i;
      }
657
      auto src_md = fmt != MKLDNNMemoryFormat::nchw
658 659 660 661 662 663 664 665 666 667 668
                        ? platform::MKLDNNMemDesc(
                              dims_, platform::MKLDNNGetDataType<float>(), fmt)
                        : Axis2MemoryDesc(dims_, logical_axis_);
      mem_p = std::make_shared<mkldnn::memory>(
          mkldnn::memory::primitive_desc{src_md, engine_}, ptr);
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }
669 670 671 672 673 674 675 676 677 678

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output,
                                                   platform::Place place) {
    auto local_key = key_ + "@user_dst_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      auto dst_mdp = mkldnn::memory::primitive_desc{
          Axis2MemoryDesc(dims_, axis_), engine_};

679
      auto dst_data = output->mutable_data<float>(place, dst_mdp.get_size());
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704

      mem_p = std::make_shared<mkldnn::memory>(dst_mdp, dst_data);
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      auto dst_data = output->mutable_data<float>(place);
      mem_p->set_data_handle(dst_data);
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::reorder> AcquireTranspose(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    auto prim_key = key_ + "@transpose_p";
    auto transpose_p =
        std::static_pointer_cast<mkldnn::reorder>(dev_ctx_.GetBlob(prim_key));
    if (transpose_p == nullptr) {
      transpose_p =
          std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
      dev_ctx_.SetBlob(prim_key, transpose_p);
    }
    return transpose_p;
  }

 protected:
705 706 707
  mkldnn_memory_desc_t Axis2MemoryDesc(std::vector<int>& nchw_tz,  // NOLINT
                                       std::vector<int>& axis      // NOLINT
                                       ) {
708 709 710 711 712 713
    mkldnn_memory_desc_t mem_fmt;

    mem_fmt.primitive_kind = mkldnn_memory;
    mem_fmt.ndims = axis.size();
    for (unsigned int i = 0; i < nchw_tz.size(); ++i) {
      mem_fmt.dims[i] = nchw_tz[i];  // logical dimensions (nchw format,
714
      // regardless physical layout)
715 716 717 718 719 720 721 722
    }
    mem_fmt.data_type = mkldnn_f32;
    mem_fmt.format = mkldnn_blocked;

    unsigned int total_stride = 1;
    for (int i = nchw_tz.size() - 1; i >= 0; --i) {
      mem_fmt.layout_desc.blocking.padding_dims[i] =
          nchw_tz[i];  // logical dimensions (nchw format, regardless physical
723
      // layout)
724 725 726 727 728 729 730 731 732 733 734 735 736
      mem_fmt.layout_desc.blocking.block_dims[i] = 1;
      mem_fmt.layout_desc.blocking.offset_padding_to_data[i] = 0;  // no offset
      mem_fmt.layout_desc.blocking.strides[0][axis[i]] = total_stride;
      mem_fmt.layout_desc.blocking.strides[1][axis[i]] = 1;
      total_stride *= nchw_tz[axis[i]];
    }
    mem_fmt.layout_desc.blocking.offset_padding = 0;  // no initial offset
    return mem_fmt;
  }

 private:
  std::vector<int> dims_;
  std::vector<int> axis_;
737
  std::vector<int> logical_axis_;
738 739
};

740 741 742 743 744 745 746 747 748 749 750 751 752
class ReorderMKLDNNHandler : public MKLDNNHandler {
 public:
  ReorderMKLDNNHandler(std::vector<int>& dims,  // NOLINT
                       framework::proto::VarType::Type vtype,
                       mkldnn::memory::data_type dtype,
                       const platform::MKLDNNDeviceContext& dev_ctx,
                       mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        dims_(dims),
        vtype_(vtype),
        dtype_(dtype) {}

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
753
      const MKLDNNMemoryFormat& fmt, void* ptr) {
754
    return this->AcquireMemory(dims_, dtype_, fmt, ptr, "@user_src_mem_p");
755 756 757
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
758
      framework::Tensor* output, const MKLDNNMemoryFormat& fmt,
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
      platform::Place place) {
    auto local_key = key_ + "@user_dst_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      auto dst_md = platform::MKLDNNMemDesc(dims_, dtype_, fmt);
      auto dst_mdp = mkldnn::memory::primitive_desc{dst_md, engine_};

      auto dst_data = output->mutable_data(place, vtype_);

      mem_p = std::make_shared<mkldnn::memory>(dst_mdp, dst_data);
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      auto dst_data = output->mutable_data(place, vtype_);
      mem_p->set_data_handle(dst_data);
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::reorder> AcquireReorder(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    auto prim_key = key_ + "@reorder_p";
    auto reorder_p =
        std::static_pointer_cast<mkldnn::reorder>(dev_ctx_.GetBlob(prim_key));
    if (reorder_p == nullptr) {
      reorder_p =
          std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
      dev_ctx_.SetBlob(prim_key, reorder_p);
    }
    return reorder_p;
  }

 private:
  std::vector<int> dims_;
  framework::proto::VarType::Type vtype_;
  mkldnn::memory::data_type dtype_;
};

798 799 800 801 802 803 804 805 806 807 808 809 810 811
template <typename T>
struct convolutional_algorithm;

template <>
struct convolutional_algorithm<mkldnn::convolution_forward> {
  static constexpr mkldnn::algorithm T = mkldnn::algorithm::convolution_direct;
};

template <>
struct convolutional_algorithm<mkldnn::deconvolution_forward> {
  static constexpr mkldnn::algorithm T =
      mkldnn::algorithm::deconvolution_direct;
};

J
Jacek Czaja 已提交
812 813 814
template <class forward_t, class backward_data_t, class backward_weights_t>
class ConvMKLDNNTemplateHandler : public MKLDNNHandler {
 public:
815 816 817 818
  ConvMKLDNNTemplateHandler(const platform::MKLDNNDeviceContext& dev_ctx,
                            mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {}

819 820 821 822 823 824 825 826 827
  // TODO(jczaja): remove after conv int8 is adapted
  ConvMKLDNNTemplateHandler(
      std::shared_ptr<typename forward_t::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

J
Jacek Czaja 已提交
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
  ConvMKLDNNTemplateHandler(
      std::shared_ptr<typename forward_t::primitive_desc> conv_pd,
      std::shared_ptr<typename backward_data_t::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<typename backward_weights_t::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

  size_t GetDstMemorySize() const {
    return conv_pd_->dst_primitive_desc().get_size();
  }

849 850
  MKLDNNMemoryFormat GetDstFormat() const {
    return static_cast<MKLDNNMemoryFormat>(
J
Jacek Czaja 已提交
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
        conv_pd_->dst_primitive_desc().desc().data.format);
  }

  size_t GetDiffWeightsMemorySize() const {
    return conv_bwd_weights_pd_->diff_weights_primitive_desc().get_size();
  }

  size_t GetDiffSourceMemorySize() const {
    return conv_bwd_data_pd_->diff_src_primitive_desc().get_size();
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto src_pd = conv_bwd_weights_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_primitive_desc(), ptr,
        "@diff_weights_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto weights_pd = conv_bwd_data_pd_->weights_primitive_desc();
    auto user_pd = user_weights_memory_p->get_primitive_desc();
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireResidualDataMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromResidualDataMemory(
      const std::shared_ptr<mkldnn::memory>& user_residual_memory_p,
      void* dst_ptr,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    return this->AcquireMemory(user_residual_memory_p,
                               this->AcquireDstMemoryFromPrimitive(dst_ptr),
                               "@residual_data_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_data_pd_->diff_src_primitive_desc(), ptr, "@diff_src_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto src_pd = conv_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

A
Adam 已提交
939 940 941 942 943 944 945 946 947 948 949
  std::shared_ptr<mkldnn::memory> AcquireWeightsMemory(
      const mkldnn::memory::desc& md, void* ptr,
      user_function custom_func = {}) {
    return this->AcquireMemory(md, ptr, "@user_weights_mem_p", custom_func);
  }

  std::shared_ptr<mkldnn::memory> AcquireBiasMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_bias_mem_p");
  }

J
Jacek Czaja 已提交
950 951 952
  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
953 954
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f}, int mask = 0) {
J
Jacek Czaja 已提交
955 956
    auto user_weights_pd = user_weights_memory_p->get_primitive_desc();
    auto weights_pd = conv_pd_->weights_primitive_desc();
957 958 959
    return this->AcquireMemory(
        weights_pd, user_weights_pd, user_weights_memory_p, "@weights_mem_p",
        pipeline, is_persistent, is_INT8, scale_data, mask);
J
Jacek Czaja 已提交
960 961 962 963
  }

  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
964 965 966 967
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
J
Jacek Czaja 已提交
968 969 970
    auto user_bias_pd = user_bias_memory_p->get_primitive_desc();
    auto bias_pd = conv_pd_->bias_primitive_desc();
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
971 972
                               "@bias_mem_p", pipeline, is_persistent, is_INT8,
                               scale_data, mask);
J
Jacek Czaja 已提交
973 974
  }

975
  mkldnn::primitive_attr CreatePostOps(
976 977
      std::string fuse_activation, float fuse_alpha, float fuse_beta,
      bool fuse_residual_conn, const std::vector<float> output_shift_scale = {},
978
      float sum_scale = 1.0f) const {
979 980
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
981 982 983 984
    if (output_shift_scale.size() > 0) {
      int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
      conv_attr.set_output_scales(mask, output_shift_scale);
    }
985 986 987 988 989 990
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
991
      post_operations.append_sum(sum_scale);
992 993 994
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
995
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
996 997
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
998
                                     fuse_alpha, fuse_beta);
999
    }
1000

1001
    if (fuse_activation == "relu6") {
1002 1003 1004
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale,
                                     mkldnn::algorithm::eltwise_bounded_relu,
1005
                                     fuse_alpha, fuse_beta);
1006
    }
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }

  std::shared_ptr<typename forward_t::primitive_desc>
  AcquireConvolutionPrimitiveDescriptor(
      const mkldnn::memory::desc& src, const mkldnn::memory::desc& weights,
      boost::optional<const mkldnn::memory::desc&> bias,
      const mkldnn::memory::desc& dst, const std::vector<int>& strides,
      const std::vector<int>& paddings, const mkldnn::engine& engine,
1017 1018
      const std::string& fuse_activation, float fuse_alpha, float fuse_beta,
      const bool fuse_residual_conn, mkldnn::prop_kind fwd_prop_kind,
1019 1020
      const std::vector<float> output_shift_scale = {},
      const float sum_scale = 1.0f) {
1021 1022 1023 1024
    // Conv PD has to be passed to Grad op that
    // may be exxecuted by diffrent thread, hence
    // for that one we use key that does not contain TID
    const std::string key_conv_pd = key_common_ + "@conv_pd";
1025

1026
    conv_pd_ = std::static_pointer_cast<typename forward_t::primitive_desc>(
1027 1028
        dev_ctx_.GetBlob(key_conv_pd));

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
    if (conv_pd_ == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);

      conv_pd_ = std::static_pointer_cast<typename forward_t::primitive_desc>(
          dev_ctx_.GetBlob(key_conv_pd));
      if (conv_pd_ == nullptr) {
        mkldnn::memory::dims stride_dims = strides;
        mkldnn::memory::dims padding_dims = paddings;

        auto conv_desc =
            bias ? typename forward_t::desc(
                       fwd_prop_kind, convolutional_algorithm<forward_t>::T,
                       src, weights, *bias, dst, stride_dims, padding_dims,
                       padding_dims, mkldnn::padding_kind::zero)
                 : typename forward_t::desc(
                       fwd_prop_kind, convolutional_algorithm<forward_t>::T,
                       src, weights, dst, stride_dims, padding_dims,
                       padding_dims, mkldnn::padding_kind::zero);

1050
        mkldnn::primitive_attr conv_attr =
1051 1052
            CreatePostOps(fuse_activation, fuse_alpha, fuse_beta,
                          fuse_residual_conn, output_shift_scale, sum_scale);
1053 1054 1055 1056 1057 1058

        conv_pd_.reset(new typename forward_t::primitive_desc(
            conv_desc, conv_attr, engine));
        // Save conv_pd/src_memory/weights_memory for backward pass
        dev_ctx_.SetBlob(key_conv_pd, conv_pd_);
      }
1059 1060 1061 1062 1063
    }

    return conv_pd_;
  }

J
Jacek Czaja 已提交
1064 1065 1066 1067 1068 1069 1070 1071
  std::shared_ptr<forward_t> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p =
        std::static_pointer_cast<forward_t>(dev_ctx_.GetBlob(prim_key));
    if (conv_p == nullptr) {
1072 1073
      conv_p = std::make_shared<forward_t>(*conv_pd_, *src_memory_p,
                                           *weights_memory_p, *dst_memory_p);
J
Jacek Czaja 已提交
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088

      dev_ctx_.SetBlob(prim_key, conv_p);
    }
    return conv_p;
  }

  std::shared_ptr<forward_t> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> bias_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p =
        std::static_pointer_cast<forward_t>(dev_ctx_.GetBlob(prim_key));
    if (conv_p == nullptr) {
1089 1090 1091
      conv_p = std::make_shared<forward_t>(*conv_pd_, *src_memory_p,
                                           *weights_memory_p, *bias_memory_p,
                                           *dst_memory_p);
J
Jacek Czaja 已提交
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

      dev_ctx_.SetBlob(prim_key, conv_p);
    }
    return conv_p;
  }

  std::shared_ptr<backward_weights_t> AcquireConvolutionBackwardWeights(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_weights_memory_p) {
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p = std::static_pointer_cast<backward_weights_t>(
        dev_ctx_.GetBlob(prim_key));
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
      conv_bwd_weights_p = std::make_shared<backward_weights_t>(
          *conv_bwd_weights_pd_, *src_memory_p, *diff_dst_memory_p,
          *diff_weights_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    }
    return conv_bwd_weights_p;
  }

  std::shared_ptr<backward_data_t> AcquireConvolutionBackwardData(
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<backward_data_t>(dev_ctx_.GetBlob(prim_key));
    if (conv_bwd_data_p == nullptr) {
      conv_bwd_data_p = std::make_shared<backward_data_t>(
          *conv_bwd_data_pd_, *diff_dst_memory_p, *weights_memory_p,
          *diff_src_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    }
    return conv_bwd_data_p;
  }

 private:
  std::shared_ptr<typename forward_t::primitive_desc> conv_pd_;
  std::shared_ptr<typename backward_weights_t::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<typename backward_data_t::primitive_desc> conv_bwd_data_pd_;
};

using ConvMKLDNNHandler =
    ConvMKLDNNTemplateHandler<mkldnn::convolution_forward,
                              mkldnn::convolution_backward_data,
                              mkldnn::convolution_backward_weights>;

using ConvTransposeMKLDNNHandler =
    ConvMKLDNNTemplateHandler<mkldnn::deconvolution_forward,
                              mkldnn::deconvolution_backward_data,
                              mkldnn::deconvolution_backward_weights>;
1147

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
template <typename T>
static std::shared_ptr<mkldnn::memory> SetDstMemory(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const std::shared_ptr<ConvMKLDNNHandler>& handler) {
  T* output_data =
      output->mutable_data<T>(ctx.GetPlace(), handler->GetDstMemorySize());
  std::shared_ptr<mkldnn::memory> dst_memory_p =
      handler->AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
  return dst_memory_p;
}

template <typename T>
static std::shared_ptr<mkldnn::memory> SetDstMemory(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const framework::Tensor* residual_param,
    const mkldnn::memory::desc& user_residual_md,
    const std::shared_ptr<ConvMKLDNNHandler>& handler,
    std::vector<mkldnn::primitive>* pipeline) {
  const T* residual_param_data = residual_param->data<T>();
  PADDLE_ENFORCE(residual_param_data != nullptr,
                 "Provide data if you want MKLDNN conv+elementwise_add fusion");
  std::shared_ptr<mkldnn::memory> user_residual_memory_p =
      handler->AcquireResidualDataMemory(user_residual_md,
                                         to_void_cast<T>(residual_param_data));
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  std::shared_ptr<mkldnn::memory> dst_memory_p =
      handler->AcquireDstMemoryFromResidualDataMemory(
          user_residual_memory_p, to_void_cast<T>(output_data), *pipeline);
  return dst_memory_p;
}

template <typename T>
static void SetDstMemoryHandler(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const std::shared_ptr<ConvMKLDNNHandler>& handler,
    std::shared_ptr<mkldnn::memory> dst_memory_p) {
  T* output_data =
      output->mutable_data<T>(ctx.GetPlace(), handler->GetDstMemorySize());
  dst_memory_p->set_data_handle(to_void_cast<T>(output_data));
}

1189 1190 1191 1192 1193 1194 1195 1196
template <typename T>
static void SetDstMemoryQuantized(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    std::vector<int> dst_tz, const mkldnn::engine& engine,
    std::shared_ptr<mkldnn::memory::primitive_desc>& dst_pd,  // NOLINT
    std::shared_ptr<mkldnn::memory>& dst_memory) {            // NOLINT
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  const size_t dst_dims = dst_tz.size();
1197 1198 1199 1200
  MKLDNNMemoryFormat dst_fmt;
  PADDLE_ENFORCE_LE(dst_dims, 5,
                    "Dst memory for quantization can not have dims > 5");
  dst_fmt = platform::MKLDNNFormatForSize(dst_dims, MKLDNNMemoryFormat::nhwc);
1201 1202 1203

  auto dst_md = platform::MKLDNNMemDesc(
      {dst_tz}, paddle::framework::ToMKLDNNDataType(
1204
                    framework::DataTypeTrait<T>::DataType()),
1205 1206 1207 1208 1209
      dst_fmt);
  dst_pd.reset(new mkldnn::memory::primitive_desc(dst_md, engine));
  dst_memory.reset(new mkldnn::memory(*dst_pd, to_void_cast<T>(output_data)));
}

J
Jacek Czaja 已提交
1210 1211
}  // namespace platform
}  // namespace paddle