group_norm_op.h 15.4 KB
Newer Older
D
Dun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
17 18
#include <array>
#include <numeric>
19 20
#include <string>
#include "paddle/fluid/framework/data_layout.h"
D
Dun 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

template <typename DeviceContext, typename T>
class GroupNormKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
38 39 40
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
D
Dun 已提交
41 42 43 44 45 46 47 48 49 50 51
    const float epsilon = ctx.Attr<float>("epsilon");
    auto* scale = ctx.Input<Tensor>("Scale");
    auto* bias = ctx.Input<Tensor>("Bias");
    auto* x = ctx.Input<Tensor>("X");

    auto* y = ctx.Output<Tensor>("Y");
    auto* mean = ctx.Output<Tensor>("Mean");
    auto* var = ctx.Output<Tensor>("Variance");
    const auto groups = ctx.Attr<int>("groups");

    const auto x_dims = x->dims();
52 53 54 55
    const int C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
    const int group_size = (C - 1) / groups + 1;
D
Dun 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

    y->mutable_data<T>(ctx.GetPlace());
    mean->mutable_data<T>(ctx.GetPlace());
    var->mutable_data<T>(ctx.GetPlace());

    auto* x_data = x->data<T>();
    auto* y_data = y->data<T>();
    auto* mean_data = mean->data<T>();
    auto* var_data = var->data<T>();

    const T* scale_data = nullptr;
    if (scale) scale_data = scale->data<T>();
    const T* bias_data = nullptr;
    if (bias) bias_data = bias->data<T>();

71 72 73 74 75 76 77 78 79 80
    int imsize = 1;
    if (data_layout == DataLayout::kNCHW) {
      for (int i = 2; i < x_dims.size(); ++i) {
        imsize *= x_dims[i];
      }
    } else {
      for (int i = 1; i < x_dims.size() - 1; ++i) {
        imsize *= x_dims[i];
      }
    }
D
Dun 已提交
81 82
    auto* iter_x_data = x_data;
    auto* iter_y_data = y_data;
83
    for (int bid = 0; bid < x_dims[0]; bid++) {
D
Dun 已提交
84
      for (int gid = 0; gid < groups; gid++) {
85 86 87 88 89
        const int64_t M = 8;
        std::array<T, M> x_mean_arr;
        std::array<T, M> x_var_arr;
        std::fill(x_mean_arr.begin(), x_mean_arr.end(), T(0));
        std::fill(x_var_arr.begin(), x_var_arr.end(), T(0));
D
Dun 已提交
90
        T x_mean = 0, x_var = 0;
91 92 93 94 95 96 97 98 99
        int number =
            std::min(group_size, static_cast<int>(C - gid * group_size));
        auto* tmp_x = iter_x_data;
        auto* x_src_data = iter_x_data;
        auto* tmp_y = iter_y_data;
        auto* y_src_data = iter_y_data;

        if (data_layout == DataLayout::kNCHW) {
          for (int cid = 0; cid < number; cid++) {
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
            int imid;
            for (imid = 0; imid < imsize - (imsize % M);
                 imid += M, iter_x_data += M) {
              // TODO(gaoxiang) :Because AVX/AVX2/AVX512 can not directly used
              // in template class/function, before we complete high
              // performance cpu vector extension, temporarily unrolling
              // loop to get high precision and performance
              x_mean_arr[0] += iter_x_data[0];
              x_var_arr[0] += iter_x_data[0] * iter_x_data[0];
              x_mean_arr[1] += iter_x_data[1];
              x_var_arr[1] += iter_x_data[1] * iter_x_data[1];
              x_mean_arr[2] += iter_x_data[2];
              x_var_arr[2] += iter_x_data[2] * iter_x_data[2];
              x_mean_arr[3] += iter_x_data[3];
              x_var_arr[3] += iter_x_data[3] * iter_x_data[3];
              x_mean_arr[4] += iter_x_data[4];
              x_var_arr[4] += iter_x_data[4] * iter_x_data[4];
              x_mean_arr[5] += iter_x_data[5];
              x_var_arr[5] += iter_x_data[5] * iter_x_data[5];
              x_mean_arr[6] += iter_x_data[6];
              x_var_arr[6] += iter_x_data[6] * iter_x_data[6];
              x_mean_arr[7] += iter_x_data[7];
              x_var_arr[7] += iter_x_data[7] * iter_x_data[7];
            }
            x_mean =
                std::accumulate(x_mean_arr.cbegin(), x_mean_arr.cend(), x_mean);
            x_var =
                std::accumulate(x_var_arr.cbegin(), x_var_arr.cend(), x_var);
            std::fill(x_mean_arr.begin(), x_mean_arr.end(), T(0));
            std::fill(x_var_arr.begin(), x_var_arr.end(), T(0));
            for (; imid < imsize; imid++, iter_x_data++) {
131 132 133 134 135 136 137
              x_mean += iter_x_data[0];
              x_var += iter_x_data[0] * iter_x_data[0];
            }
          }
        } else {
          for (int cid = 0; cid < number; cid++) {
            iter_x_data = tmp_x + cid;
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
            int imid;
            for (imid = 0; imid < imsize - (imsize % M);
                 imid += M, iter_x_data += M * C) {
              // TODO(gaoxiang) :Because AVX/AVX2/AVX512 can not directly used
              // in template class/function, before we complete high
              // performance cpu vector extension, temporarily unrolling
              // loop to get high precision and performance
              x_mean_arr[0] += iter_x_data[0 * C];
              x_var_arr[0] += iter_x_data[0 * C] * iter_x_data[0 * C];
              x_mean_arr[1] += iter_x_data[1 * C];
              x_var_arr[1] += iter_x_data[1 * C] * iter_x_data[1 * C];
              x_mean_arr[2] += iter_x_data[2 * C];
              x_var_arr[2] += iter_x_data[2 * C] * iter_x_data[2 * C];
              x_mean_arr[3] += iter_x_data[3 * C];
              x_var_arr[3] += iter_x_data[3 * C] * iter_x_data[3 * C];
              x_mean_arr[4] += iter_x_data[4 * C];
              x_var_arr[4] += iter_x_data[4 * C] * iter_x_data[4 * C];
              x_mean_arr[5] += iter_x_data[5 * C];
              x_var_arr[5] += iter_x_data[5 * C] * iter_x_data[5 * C];
              x_mean_arr[6] += iter_x_data[6 * C];
              x_var_arr[6] += iter_x_data[6 * C] * iter_x_data[6 * C];
              x_mean_arr[7] += iter_x_data[7 * C];
              x_var_arr[7] += iter_x_data[7 * C] * iter_x_data[7 * C];
            }
            x_mean =
                std::accumulate(x_mean_arr.cbegin(), x_mean_arr.cend(), x_mean);
            x_var =
                std::accumulate(x_var_arr.cbegin(), x_var_arr.cend(), x_var);
            std::fill(x_mean_arr.begin(), x_mean_arr.end(), T(0));
            std::fill(x_var_arr.begin(), x_var_arr.end(), T(0));
            for (; imid < imsize; imid++, iter_x_data += C) {
169 170 171
              x_mean += iter_x_data[0];
              x_var += iter_x_data[0] * iter_x_data[0];
            }
D
Dun 已提交
172
          }
173
          iter_x_data = tmp_x + group_size;
D
Dun 已提交
174
        }
175

D
Dun 已提交
176 177
        x_mean /= number * imsize;
        x_var /= number * imsize;
178 179
        x_var = std::max(x_var - x_mean * x_mean, T(0));
        T var_inv = T(1) / std::sqrt(x_var + epsilon);
D
Dun 已提交
180 181
        mean_data[bid * groups + gid] = x_mean;
        var_data[bid * groups + gid] = x_var;
182 183 184 185 186 187 188 189 190

        if (data_layout == DataLayout::kNCHW) {
          for (int cid = 0; cid < number; cid++) {
            for (int imid = 0; imid < imsize; imid++, tmp_x++, iter_y_data++) {
              T val = (tmp_x[0] - x_mean) * var_inv;
              if (scale_data) val *= scale_data[gid * group_size + cid];
              if (bias_data) val += bias_data[gid * group_size + cid];
              iter_y_data[0] = val;
            }
D
Dun 已提交
191
          }
192 193 194 195 196 197 198 199 200 201 202 203 204
        } else {
          for (int cid = 0; cid < number; cid++) {
            tmp_x = x_src_data + cid;
            iter_y_data = y_src_data + cid;
            for (int imid = 0; imid < imsize;
                 imid++, tmp_x += C, iter_y_data += C) {
              T val = (tmp_x[0] - x_mean) * var_inv;
              if (scale_data) val *= scale_data[gid * group_size + cid];
              if (bias_data) val += bias_data[gid * group_size + cid];
              iter_y_data[0] = val;
            }
          }
          iter_y_data = tmp_y + group_size;
D
Dun 已提交
205 206
        }
      }
207 208 209 210 211
      if (data_layout == DataLayout::kNHWC) {
        iter_x_data = x_data + (bid + 1) * C * imsize;
        iter_y_data = y_data + (bid + 1) * C * imsize;
      }
    }
D
Dun 已提交
212 213 214 215 216 217 218
  }
};

template <typename DeviceContext, typename T>
class GroupNormGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
219 220 221
    const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
    const DataLayout data_layout =
        framework::StringToDataLayout(data_layout_str);
D
Dun 已提交
222
    const float epsilon = ctx.Attr<float>("epsilon");
223
    auto* x = ctx.Input<Tensor>("Y");
D
Dun 已提交
224 225
    auto* var = ctx.Input<Tensor>("Variance");
    auto* scale = ctx.Input<Tensor>("Scale");
226
    auto* bias = ctx.Input<Tensor>("Bias");
D
Dun 已提交
227 228 229 230 231 232 233 234 235
    auto* d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto groups = ctx.Attr<int>("groups");

    // init output
    auto* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto* d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    const auto& x_dims = x->dims();
236 237 238 239
    const int C =
        (data_layout == DataLayout::kNCHW ? x_dims[1]
                                          : x_dims[x_dims.size() - 1]);
    const int group_size = (C - 1) / groups + 1;
D
Dun 已提交
240

241
    d_x->mutable_data<T>(ctx.GetPlace());
D
Dun 已提交
242 243 244 245
    math::SetConstant<DeviceContext, T> set_zero;
    auto& dev_ctx = ctx.template device_context<DeviceContext>();

    auto* x_data = x->data<T>();
246
    auto* d_x_data = d_x->data<T>();
D
Dun 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
    auto* y_data = d_y->data<T>();
    auto* var_data = var->data<T>();
    T* d_scale_data = nullptr;
    if (d_scale) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      set_zero(dev_ctx, d_scale, static_cast<T>(0));
      d_scale_data = d_scale->data<T>();
    }
    T* d_bias_data = nullptr;
    if (d_bias) {
      d_bias->mutable_data<T>(ctx.GetPlace());
      set_zero(dev_ctx, d_bias, static_cast<T>(0));
      d_bias_data = d_bias->data<T>();
    }

    const T* scale_data = nullptr;
    if (scale) scale_data = scale->data<T>();
264 265
    const T* bias_data = nullptr;
    if (bias) bias_data = bias->data<T>();
D
Dun 已提交
266

267 268 269 270 271 272 273 274 275 276
    int imsize = 1;
    if (data_layout == DataLayout::kNCHW) {
      for (int i = 2; i < x_dims.size(); ++i) {
        imsize *= x_dims[i];
      }
    } else {
      for (int i = 1; i < x_dims.size() - 1; ++i) {
        imsize *= x_dims[i];
      }
    }
D
Dun 已提交
277 278 279
    auto* iter_x_data = x_data;
    auto* iter_d_x_data = d_x_data;
    auto* iter_y_data = y_data;
280
    for (int bid = 0; bid < x_dims[0]; bid++) {
D
Dun 已提交
281 282 283
      for (int gid = 0; gid < groups; gid++) {
        T x_var = var_data[bid * groups + gid];
        T var_inv = 1.0 / sqrt(x_var + epsilon);
284 285
        int number =
            std::min(group_size, static_cast<int>(C - gid * group_size));
286
        T number_inv = 1.0 / (number * imsize);
287 288 289 290 291 292 293 294
        auto* tmp_x = iter_x_data;
        auto* tmp_y = iter_y_data;
        auto* tmp_d_x = iter_d_x_data;
        auto* x_src_data = iter_x_data;
        auto* y_src_data = iter_y_data;
        auto* iter_x_data_backup = iter_x_data;
        auto* iter_y_data_backup = iter_y_data;
        auto* iter_d_x_data_backup = iter_d_x_data;
295
        T dp_scale = 0, dp_bias = 0;
296 297 298 299 300 301 302 303 304

        if (data_layout == DataLayout::kNCHW) {
          for (int cid = 0; cid < number; cid++) {
            for (int imid = 0; imid < imsize;
                 imid++, iter_x_data++, iter_y_data++) {
              T val = iter_x_data[0];
              if (bias_data) val -= bias_data[gid * group_size + cid];
              T dval = iter_y_data[0];
              dp_scale += val * dval;
305 306
              if (scale_data)
                dp_bias += dval * scale_data[gid * group_size + cid];
307 308 309 310 311 312 313

              if (scale_data && scale_data[gid * group_size + cid] != 0)
                val /= scale_data[gid * group_size + cid];
              if (d_bias_data) d_bias_data[gid * group_size + cid] += dval;
              if (d_scale_data)
                d_scale_data[gid * group_size + cid] += val * dval;
            }
D
Dun 已提交
314 315
          }

316 317 318 319 320 321 322
          for (int cid = 0; cid < number; cid++) {
            for (int imid = 0; imid < imsize;
                 imid++, iter_d_x_data++, tmp_x++, tmp_y++) {
              T v_y = tmp_x[0];
              T dly = tmp_y[0];
              T dss = dp_scale;
              T dbs = dp_bias;
323 324 325
              T v_scale = 1., v_bias = 0.;
              if (scale_data) v_scale = scale_data[gid * group_size + cid];
              if (bias_data) v_bias = bias_data[gid * group_size + cid];
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
              v_y -= v_bias;
              if (v_scale != 0) v_y /= v_scale;
              iter_d_x_data[0] =
                  (dly * v_scale - number_inv * dss * v_y - number_inv * dbs) *
                  var_inv;
            }
          }
        } else {
          for (int cid = 0; cid < number; cid++) {
            iter_x_data = x_src_data + cid;
            iter_y_data = y_src_data + cid;
            for (int imid = 0; imid < imsize;
                 imid++, iter_x_data += C, iter_y_data += C) {
              T val = iter_x_data[0];
              if (bias_data) val -= bias_data[gid * group_size + cid];
              T dval = iter_y_data[0];
              dp_scale += val * dval;
343 344
              if (scale_data)
                dp_bias += dval * scale_data[gid * group_size + cid];
345 346 347 348 349 350 351

              if (scale_data && scale_data[gid * group_size + cid] != 0)
                val /= scale_data[gid * group_size + cid];
              if (d_bias_data) d_bias_data[gid * group_size + cid] += dval;
              if (d_scale_data)
                d_scale_data[gid * group_size + cid] += val * dval;
            }
D
Dun 已提交
352
          }
353 354 355 356 357 358 359 360 361 362 363

          for (int cid = 0; cid < number; cid++) {
            tmp_x = x_src_data + cid;
            tmp_y = y_src_data + cid;
            iter_d_x_data = tmp_d_x + cid;
            for (int imid = 0; imid < imsize;
                 imid++, iter_d_x_data += C, tmp_x += C, tmp_y += C) {
              T v_y = tmp_x[0];
              T dly = tmp_y[0];
              T dss = dp_scale;
              T dbs = dp_bias;
364 365 366
              T v_scale = 1.0, v_bias = 0.;
              if (scale_data) v_scale = scale_data[gid * group_size + cid];
              if (bias_data) v_bias = bias_data[gid * group_size + cid];
367 368 369 370 371 372 373 374 375 376
              v_y -= v_bias;
              if (v_scale != 0) v_y /= v_scale;
              iter_d_x_data[0] =
                  (dly * v_scale - number_inv * dss * v_y - number_inv * dbs) *
                  var_inv;
            }
          }
          iter_x_data = iter_x_data_backup + group_size;
          iter_y_data = iter_y_data_backup + group_size;
          iter_d_x_data = iter_d_x_data_backup + group_size;
D
Dun 已提交
377 378
        }
      }
379 380 381 382 383 384
      if (data_layout == DataLayout::kNHWC) {
        iter_x_data = x_data + (bid + 1) * C * imsize;
        iter_d_x_data = d_x_data + (bid + 1) * C * imsize;
        iter_y_data = y_data + (bid + 1) * C * imsize;
      }
    }
D
Dun 已提交
385 386 387 388 389
  }
};

}  // namespace operators
}  // namespace paddle